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1. INTRODUCTION
Continuations are the raw material of control. They can

be used to explain a wide variety of control behaviours,
including calling/returning (procedures), raising/handling
(exceptions), labelled jumping (goto statements), process
switching (coroutines), and backtracking. In the most pow-
erful form, represented by callcc and its cousins, the pro-
grammer can manipulate continuations as first-class values.
It can be argued, however, that unrestricted use of contin-
uations, especially when combined with state, can give rise
to intractable higher-order spaghetti code. Hence, few lan-
guages give the user direct, reified, access to continuations;
rather, they are “behind the scenes”, implementing other
control behaviours, and their use is highly stylised.

But just what is this stylised usage? Remarkably, as we
will argue, in many forms of control, continuations are used
linearly [6]. This is true for a wide range of effects, including
procedure call and return, exceptions, goto statements, and
coroutines.

Formally, for a number of control behaviours, we present
continuation-passing-style (cps) transformations into a lan-
guage with both intuitionistic and linear function types. We
also remark on combinations of features which break linear-
ity. Interestingly, the presence of named labels, by itself,
does not. And neither does backward jumping, which is dif-
ferent in character from backtracking.

This is essentially an attempt to formalise ideas about
continuation usage, some of which have been hinted at in
the literature. Indeed, part of what we say is known or
suspected amongst continuation insiders; however, we have
not found any of the linear typings we give stated anywhere.

The basic idea can be seen in the type used to interpret
untyped call-by-value (cbv) λ-calculus. Just as Scott gave
a typed explanation of untyped λ-calculus using a domain
equation

D ∼= D → D

we can understand linear use of continuations in terms of
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the domain equation

D ∼= (D → R)( (D → R),

where R is a type of results. If we were to change the prin-
cipal ( to an →, then this type could accept callcc; but,
as we later discuss, callcc duplicates the current continu-
ation, and is ruled out by this typing. Thus, even though
one might claim that the linear usage of continuations has
nothing to do with typing in the source language, we can
nonetheless use types in the target language to analyse con-
trol behaviour.

An essential point is that it is continuation transformers,
rather than continuations, which are linear. This is the rea-
son we say that continuations are used linearly. All of the
interpretations we present are variations on this idea.

Our chief concern in this paper is to describe the main
conceptual aspects of linearly used continuations in a way
that keeps the technical discussion as simple as possible. So
we concentrate on soundness only. A comprehensive analysis
of completeness properties of our transforms, or variants,
represents a challenge for future work, and in stating the
transforms for a variety of features we hope to make clear
what some of the challenges are. Several of these problems
are discussed at the end of the paper.

2. THE TARGET LANGUAGE
We need a formulation of linear type theory built from

the connectives (, → and &, and use one based on DILL
[3], which is a presentation of linear typing that allows a
pleasantly direct description of → (which does not rely on
decomposition through !).

P ::= R | P ( P | A→ P | P&P | X | µX.P

A ::= ρ | P

Here, X ranges over type variables, µ builds recursive types,
and ρ ranges over primitive types. Types P are pointed
while types A are not necessarily. Pointed types are those
for which recursion is allowed. In particular, primitive types
used to treat atomic data (such as a type for integers) should
not be pointed in a cps language. It would be possible to
add type constructors for sums, !, and so on, but we will not
need them.

The distinction between pointed and non-pointed types is
especially vivid in the standard predomain model of the sys-
tem, where a pointed type denotes a pointed cpo (one with
bottom) and a type denotes a possibly bottomless cpo. The
type R of results denotes the two-point lattice, & is cartesian



product, ( is strict function space, and → is lifting. µ is
interpreted using the inverse limit construction. This is not
an especially accurate model of the language, because the
interpretation of ( validates Contraction and because the
abstractness of the result type is not accounted for. But the
model is certainly adequate for any reasonable operational
semantics, and so serves as a useful reference point.

There is also a predomain variant of the original coherence
space model of linear logic. In this model a type denotes
a family of coherence spaces and a pointed type denotes
a singleton such family [2]. Then ( is the usual linear
function type, and {Ai}i∈I → P is a product

∏
i∈I Ai ⇒ P

where ⇒ is stable function space and
∏
i∈I is the direct

product of coherence spaces; this gives us a singleton family
(that is, a pointed type).

The system uses typing judgements of the form

Γ; ∆ `M : A

where the context consists of an intuitionistic zone Γ and
a linear zone ∆. Intuitionistic and linear zones are sets of
associations x : A pairing variables with types. Since we use
sets, the Exchange rules are built in.

Γ, x : A; ` x : A Γ;x : P ` x : P

Γ; ∆, x : P `M : Q

Γ; ∆ ` δx.M : P ( Q

Γ; ∆1 `M : P ( Q
Γ; ∆2 ` N : P

Γ; ∆1,∆2 `M N : Q

Γ, x : A; ∆ `M : P

Γ; ∆ ` λx.M : A→ P

Γ; ∆ `M : A→ P
Γ; ` N : A

Γ; ∆ `M N : P

Γ; ∆ `M : P Γ; ∆ ` N : Q

Γ; ∆ ` 〈M,N〉 : P&Q

Γ; ∆ `M : P1&P2

Γ; ∆ ` πi M : Pi

We will frequently consider situations where some number
of continuations are held in a single &-tuple in the linear
zone. We introduce the following syntactic sugar for them,
using the evident n-ary form of &-product, rather than the
binary form.

• Γ; ∆, 〈x1, . . . , xn〉 : P1& · · ·&Pn ` M : P stands for
Γ; ∆, y : P1& · · ·&Pn `M [π1 y/x1, . . . , πn y/xn] : P .

• δ〈x1,..., xn〉.M stands for δy.M [π1 y/x1,..., πn y/xn].

For simplicity in presenting the transforms, we handle re-
cursive types using the “equality approach”, where µX.P
and its unfolding P [µX.P/X] are equal, yielding the typing
rule

Γ; ∆ `M : P
P = Q

Γ; ∆ `M : Q

We omit the details and instead refer to [1] for a compre-
hensive treatment.

3. CALL/RETURN
A prominent historic explanation of procedure call/return

in terms of continuations is the Fischer (continuation-first)
cps transform. Here we transform untyped cbv (operator-

first) λ-calculus into the linear target language.

x = δk. k x

λx.M = δk. k (δk′.λx.M k′)

M N = δk.M (λm.N (λn. (m k)n))

Here we see that, as mentioned in the introduction, source
language procedures are interpreted by continuation trans-
formers: terms which accept a continuation and yield an-
other continuation based upon the argument continuation,
and thus have type

µX. (X → R)( (X → R),

abbreviated D. (Henceforth, we do not explicitly define the
types and type abbreviations corresponding to domains.)
So a continuation transformer is effectively the difference,
or delta, between two continuations, and δ is used to form
such abstractions.

Proposition 1. If x1, . . . , xn contains the free variables
of M , then

x1 : D, . . . , xn : D; `M : (D → R)( R.

Here, notice that source variables always get sent to the in-
tuitionistic zone, where they can be duplicated or discarded
freely. Continuation arguments, on the other hand, always
show up in the linear zone in the course of typing a target
term.

A common area of confusion is the relationship between
linearity and recursion. Since recursion can be defined via
self application in the source language, will we not have to
use a continuation many times, or not at all, in the target?
The short answer is no: continuations do not need to be
used more than once since we use recursive continuation
transformers to construct non-recursive continuations, and
these continuation transformers can be used many times.

We explain this by concentrating on the transform of the
most basic self-application:

f f = δk. f k f.

This makes clear that, in the target language, recursion is
effected by a sort of self-application in which a continua-
tion transformer f is passed to a continuation f k which is
obtained from f itself. If we were to uncurry the type of
continuation transformers, a call to f would directly pass
itself as one of the arguments. The important point here
is that self application in the source only breaks linearity
of continuations in the target, not continuation transform-
ers; that is, it is entirely possible for the continuation f k
to be non-linear, without violating linearity of f . The typ-
ing derivation of self-application in the target language (see
Figure 1) shows how the recursive type must be “unwound”
once to type the operand occurrence of f .

Finally, it is essential to note that linearity does not arise
because of any linear λs in the source, but because contin-
uations are not reified and hence cannot be wrapped into
closures. This is similar to O’Hearn and Reynolds’s work
[9], where linearity and polymorphism arise in the target of
a translation from Algol; this prevents the state from being
treated, semantically, as if it were first-class.

4. EXCEPTIONS



f : D; ` f : D
D = (D → R)( (D → R)

f : D; ` f : (D → R)( (D → R) f : D; k : D → R ` k : D → R

f : D; k : D → R ` f k : D → R f : D; ` f : D

f : D; k : D → R ` f k f : R

f : D; ` δk. f k f : (D → R)( R

Figure 1: Typing derivation of self-application in the target language

Exceptions are a powerful, and useful, jumping construct.
But their typing properties are rather complex, and vary
somewhat from language to language. To study the jumping
aspect of exceptions we focus on an untyped source language
with raise and handle primitives.

We proceed as before, but now using a domain equation

D ∼= (D → R)&(D → R)( (D → R).

A typed version of this can even be derived from a direct
semantics, following Moggi. That is, we start with

(A→ B)∗ = A∗ → B∗ + E,

followed by a standard cps semantics which gives us

A∗ → B∗ + E = ((B∗ + E)→ R)( (A∗ → R),

and finally a manipulation using the isomorphism

(B∗ + E)→ R ∼= (B∗ → R)&(E → R).

In this double-barrelled cps two continuations are manip-
ulated: current and handler [17].

x = δ〈k, h〉. k x

λx.M = δ〈k, h〉. k (δ〈k′, h′〉. λx.M 〈k′, h′〉)

M N = δ〈k, h〉.M 〈(λm.N 〈m 〈k, h〉, h〉), h〉

raiseM = δ〈k, h〉.M 〈h, h〉

handleM λe.H = δ〈k, h〉.M 〈k, (λe.H 〈k, h〉)〉

Proposition 2. If x1, . . . , xn contains the free variables
of M , then

x1 : D, . . . , xn : D; `M : (D → R)&(D → R)( R.

Note that the first three cases do not manipulate the
handler continuation, just pass it along. The transform
of raiseM indicates that M is evaluated and the result-
ing value is thrown to the handler continuation, and if the
evaluation of M results in an exception being raised, the
current handler continuation is used. Correspondingly, the
transform of handleM λe.H evaluates M with the same re-
turn continuation but installs a new handler continuation
which given e, evaluates H with (handleM λe.H)’s contin-
uations.

At first sight, this treatment of handling looks like dupli-
cation of the current continuation. But it is not: the use of
& to the left of ( indicates that a program uses either the
current continuation or the handler continuation, but not
both. Thus, linear typing succinctly summarises an impor-
tant aspect of the jumping behaviour of exceptions, which
draws a sharp distinction with callcc and its non-linear
usage of continuations.

5. DUPLICATING CONTINUATIONS
A crucial reason Propositions 1 and 2 hold is that in the

application of an intuitionistic function, the argument can-
not have any free linear variables. This has the effect of
precluding upward continuations, where a continuation is
wrapped in a closure and returned, or passed as the argu-
ment to another function. Concretely, this is demonstrated
by the term (which does not typecheck)

δk. k (δh.λx. k (δl.λy. l x))

in which k is an upward continuation, that is, wrapped in
a closure which is thrown to another continuation; in this
case, k itself. This term, which corresponds to

callccλk.λx. throw k λy. x

in the source language, exhibits the backtracking behaviour
leading to the higher-order spaghetti code associated with
callcc. We use the typed variant, callcc, rather than the
untyped, call/cc, since the latter would require modifica-
tion of the interpretation of procedures. The cps transform
of callcc shows how continuations are duplicated, breaking
linearity.

callcc = δk. k (δh.λf. (f h)h)

This fails to typecheck since h, which is δ-bound and hence
linear, is passed to f as both its return continuation and
argument.

Similar backtracking behaviour can be seen in snobol

and Prolog, and their continuation semantics do not obey a
discipline of linearly used continuations [14, 7].

6. REIFIED CONTINUATIONS, AND UP-
WARD VERSUS DOWNWARD

It might be expected that the reason continuations are
used linearly in the call/return and exceptions cases is that
they are not reified, which is to say directly named by pro-
gram variables, as callcc achieves. After all, source lan-
guage variables may appear any number of times in a term.
This reasoning is only partially valid. To explain this, we
consider a language where continuations are reified, but still
used linearly.

We consider a language of arithmetic expressions, with a
means of labelling a subexpression.

E ::= x | n | E + E | l : E | goto l E

A goto statement sends a value to the position where the
indicated label resides. As an example,

2 + (l : (3 + (goto l 7)))

evaluates to 9, as evaluation jumps past 3 + [], effectively
sending 7 to the hole in 2 + []. Labelling an expression and



sending to it with goto is effectively a first-order version of
naming a continuation with callcc and throwing to it.

Following this analogy, labelling an expression associates
the current continuation of the expression with the label
name, and goto l effects a throw to the continuation associ-
ated with l. The crucial point is that although continuations
are reified, they cannot escape the context in which they are
originally defined. That is, in

l : E

l cannot escape out of E. On the other hand, in the analo-
gous term in the language with first-class continuations

callccλk.M

k can indeed escape out of M , as the example in the pre-
vious section demonstrated. This means that continuations
are not upward in the language of forward jumps, only down-
ward.

Unlike the previous cases, this language is not higher-
order; so we interpret expressions with the (non-recursive)
types

(N→ R)& · · ·&(N→ R)( R,

where N is a primitive type of natural numbers. The first
continuation in the &-tuple is the current continuation, and
the others represent the labels free in the source expression.

x~l = δ〈k,~l〉. k x

n~l = δ〈k,~l〉. k n

E + F~l = δ〈k,~l〉. E~l 〈(λe. F~l 〈(λf. k (e+ f)),~l〉),~l〉

ln+1 : E~l = δ〈k,~l〉. E~l,ln+1
 〈k,~l, k〉

goto liE~l = δ〈k,~l〉. E~l 〈li,~l〉

~l is a list of labels l1, . . . , ln. For precision, the transform of

E is parameterised by ~l containing the labels free in E.
In the l : E clause, since the two occurrences of k are

within a &-tuple, linearity is not violated.

Proposition 3. If x1, . . . , xm contains the free variables

of E, and ~l (= l1, . . . , ln) contains the free labels of E, then

x1 :N, . . . , xm :N; ` E~l : (N→R)&· · ·&(N→R)︸ ︷︷ ︸
n

( R.

The moral of this story is that we cannot attribute the
failure of linearity in the treatment of callcc only to the
ability to name continuations (in the presence of Contrac-
tion and Weakening of source language variables). However,
these features together with upward continuations, which
arise from higher-order procedures, suffice to break linear-
ity.

7. BACKWARD JUMPS
Next, one might think that the linear use of continuations

in the previous section is due to the absence of backward
jumps. That is, if one has backward jumps, cannot one
jump to the same continuation multiple times, thus violating
linearity?

The answer is no, backward jumping does not require du-
plication of continuations. In fact, this point has already
been made in the treatment of untyped λ-calculus, which

involves self application, but it is helpful to look at it in a
setting where jumping is effected by explicit manipulation
of reified continuations rather than by the call/return mech-
anism’s implicit manipulation of non-reified continuations.

In order to bring the central issues out with a minimum of
distraction, we begin with an informal discussion of how to
define a single recursive label, before giving a precise treat-
ment of a full language.

Suppose we have a simple language of commands, with
command continuations

K = S→ R

where S is the type of stores. (When performing backward
jumps it is necessary to communicate information, if one is
not to always loop indefinitely. So it is reasonable here to
consider state; alternatively, we could consider labels that
accept a number of arguments.) We suppose that we have
a command C of type

K&K ( K.

The first argument is the current continuation, which repre-
sents the effect of executing the rest of the program, and the
second is the denotation of the (single) label l. We will show
how to interpret a construct l : C where jumps to l within C
go back to the beginning of l : C. This construct effectively
binds l, and will result in a continuation transformer of type

K ( K

which accepts a toplevel (current) continuation. We use a
standard fixed-point combinator

Y : (P → P )→ P.

At first sight the desired transform appears to be incom-
patible with linearity. Indeed, were we not restricting the
use of continuations, we could interpret l : C with the type

K → K

and define the transform as

l :C = λk. Yλh.C 〈k, h〉

This approach, in which a recursive continuation is defined
directly using Y : (K → K)→ K, is the one typically taken
in the continuation semantics of goto.

However, by moving up a level in the types we can tie the
label l up in a recursion.

l :C = Yλt. δk. C 〈k, t k〉

Note that the term we take a fixed-point of has type (K (
K) → (K ( K), so the definition of a program makes use
a recursive continuation transformer, but continuations are
not themselves recursive. The upshot is that different back-
ward jumps to l correspond to different continuations, which
may be viewed as being generated in fixed-point unwinding.
(This is very similar to the handling of recursion in untyped
λ-calculus where continuation transformers are self-applied
to unwind to a fixed-point, but continuations are not recur-
sive. The only difference here is that we explicitly take a
fixed-point, rather than rely on self-application.)

It is curious how linearity forces fixed-points to be taken
at higher types here.

With this as background we move on to a full lan-
guage, the “small continuation language” of Strachey and



Wadsworth [13]. We emphasise that our treatment of
recursive labels is not identical to that of Strachey and
Wadsworth, as we must go up a level in the types to ac-
commodate linearity (it is again curious, however, that the
entirety of [13] is compatible with linear continuation usage).

The source language consists of expressions, E, and com-
mands, C.

C::= p | dummy | C0;C1 | E→C0, C1 | gotoE

| §C0; l1 :C1; . . . ; ln :Cn §| | resultisE

E::= x | l | true | false | E0→E1, E2 | valofC

Here p is a primitive statement, x is a variable, l is a label.
Note that we do not include explicit loops since they are
redundant, though they could be easily added.

We extend the target language with a primitive type of
booleans, B.

Γ; ` tt : B Γ; ` ff : B

Γ; ∆ `M : B Γ; ∆′ ` N : A Γ; ∆′ ` O : A

Γ; ∆,∆′ ` ifM thenN elseO : A

Primitive commands are mapped to their interpretations
in the target language by

[[p]] : K ( K.

Commands are interpreted with the types

K&(B→ K)&K&K& · · ·&K ( K

The first argument in the &-tuple is the current command
continuation. Next, the current return continuation is the
expression continuation to which a resultis command will
deliver a value. After that, the failure continuation is a con-
stant command continuation invoked when a valof com-
mand “falls off the end” without performing a resultis

command. Finally, the remaining command continuations
are the denotations of the labels in scope.

Similarly, expressions are interpreted with the types

(B→ K)&K&K& · · ·&K ( K.

Here the first argument in the &-tuple, the current expres-
sion continuation, is the expression continuation to which
the value of the expression will be delivered. The remaining
arguments: the failure continuation and command continu-
ations, are handled as above.

The transforms, given in Figure 2, make use of a divergent
term

diverge = Yλx. x : P

and are parameterised by a sequence of labels, l1, . . . , ln,
which contains the labels free in the term being transformed.
In defining the transforms, we use the notation ,ni=1M as a
shorthand for M [1/i],M [2/i], . . . ,M [n/i].

Strachey and Wadsworth’s semantics of gotoE uses a cur-
rent continuation which “projects” its argument, performing
a sort of dynamic type-checking. But they do not specify
what happens if the check fails. Here we specify that exe-
cution diverges, but other choices are possible: the failure
continuation which is being carried around could be used,
for instance.

The interpretation of a valof expression

valofC~l = δ〈k, f,~l〉. C~l 〈f, k, f,~l〉

installs the failure continuation as the current continuation,
and installs the current expression continuation as the re-
turn continuation, and executes C. The interpretation of a
resultis command

resultisE~l = δ〈k, r, f,~l〉. E~l 〈r, f,~l〉

evaluates expression E with the current return continuation
as the expression continuation, ignoring the current contin-
uation.

Proposition 4. 1. If x1, . . . , xm contains the free

variables of C, and ~l (= l1, . . . , ln) contains the free
labels of C, then

x1 : A1, . . . , xm : Am; ` C~l
: K&(B→ K)&K&K& · · ·&K︸ ︷︷ ︸

n

( K

2. If x1, . . . , xm contains the free variables of E, and ~l
(= l1, . . . , ln) contains the free labels of E, then

x1 : A1, . . . , xm : Am; ` E~l
: (B→ K)&K&K& · · ·&K︸ ︷︷ ︸

n

( K

8. COROUTINES
One view of a continuation is as the state of a process,

and it has been known for some time that the combination
of state and labels can be used to implement coroutines [11].

To design a continuation semantics of coroutines we do
not, however, need the full power of the features used in
these encodings; namely, first-class control and higher-order
store. But we need to do more than simply have several
continuations, one for each coroutine, and swap them. The
extra ingredient that is needed is the ability to pass the saved
state of one coroutine to another, so the other coroutine can
then swap back; this is implemented using a recursive type.
For simplicity, we concentrate on the case of having two
coroutines, and we work with the language of arithmetic
expressions.

The language consists of arithmetic expressions, E, en-
riched with a construct for swapping to the other coroutine,
and programs, P , which set up two global coroutines.

E ::= x | n | E + E | swapE

P ::= E ‖ (x)E

Execution begins with the left E. On the first swap, the
value sent is bound to x, and the right coroutine is executed.
A subsequent swap from one coroutine sends a value into the
place of the last swap executed by the other. swapping then
continues until the left coroutine terminates. For example,

2 + swap 99 ‖ (x)(x+ swap (x+ 2)) + 33

returns 103. The x + 2 part of the right coroutine gets
executed, (x+[])+33 does not. (We later discuss two options
for coroutine termination.)

The transform uses two continuations: current and saved.
The current continuation is where a result is delivered on
normal termination, and the saved continuation records the



x~l = δ〈k, f,~l〉. k x

l~l = δ〈k, f,~l〉. l

true~l = δ〈k, f,~l〉. k tt

false~l = δ〈k, f,~l〉. k ff

E0→E1, E2~l = δ〈k, f,~l〉. E0~l 〈λx. (ifx thenE1~l elseE2~l) 〈k, f,~l〉, f,~l〉

valofC~l = δ〈k, f,~l〉. C~l 〈f, k, f,~l〉

p~l = δ〈k, r, f,~l〉. [[p]] k

dummy~l = δ〈k, r, f,~l〉. k

C0;C1~l = δ〈k, r, f,~l〉. C0~l 〈C1~l 〈k, r, f,~l〉, r, f,~l〉

E→C0, C1~l = δ〈k, r, f,~l〉. E~l 〈λx. (ifx thenC0~l elseC1~l) 〈k, r, f,~l〉, f,~l〉

gotoE~l = δ〈k, r, f,~l〉. E~l 〈diverge k, f,~l〉

§C0; l1 :C1; . . . ; ln :Cn §|~l = δ〈k, r, f,~l〉. (λ〈,ni=1ti〉. C0~l 〈t1 〈k, r, f,~l〉, r, f,~l, ,
n
i=1ti 〈k, r, f,~l〉〉)

(Yλ〈,ni=1ti〉. 〈,
n−1
i=1 δ〈k, r, f,~l〉. Ci~l,,n

i=1li
 〈ti+1 〈k, r, f,~l〉, r, f,~l, ,ni=1ti 〈k, r, f,~l〉〉

, δ〈k, r, f,~l〉. Cn~l,,n
i=1li

 〈k, r, f,~l, ,ni=1ti 〈k, r, f,~l〉〉〉)

resultisE~l = δ〈k, r, f,~l〉. E~l 〈r, f,~l〉

Figure 2: Transforms of expressions and commands

suspended state of the other coroutine. The domain of con-
tinuations is

C ∼= N→ C ( R,

and the type of expressions (coroutines) is

C ( C ( R.

The transform of expressions is defined as follows.

x = δk.δs. k x s

n = δk.δs. k n s

E + F = δk.δs. E (λe.δt. F (λf.δr. k (e+ f) r) t) s

swapE = δk.δs. E (λe.δt. t e k) s

The idea behind the transform for the swap construct is that
E is evaluated, and then the saved continuation is invoked.
In this invocation, t is used instead of s in case the other
coroutine changed state (by swapping and swapping back)
during evaluation of E. The current continuation k is saved
as the suspended state of the current coroutine.

Proposition 5. If x1, . . . , xn contains the free variables
of E, then

x1 : N, . . . , xn : N; ` E : C ( C ( R.

When it comes to interpreting toplevel programs there are
a number of alternatives, which revolve around the choice
of what to do when one or the other coroutine terminates.

The first, purest, possibility is to simply have two toplevel
continuations, and to “terminate” by passing an answer to
one of the continuations, along with the state of the other

coroutine. A program is also given type C ( C ( R, and
the transform is

E ‖ (x)F = δp.δq. E p (λx.δs. F q s).

In this alternative, when one of the coroutines finishes the
other might still proceed further, if it is jumped back into
from a toplevel continuation (p or q).

Proposition 6. If x1, . . . , xn contains the free variables
of E ‖ (x)F , then

x1 : N, . . . , xn : N; ` E ‖ (x)F : C ( C ( R.

In a second alternative, one coroutine’s termination makes
it impossible to jump back into the other, and the toplevel
continuation will just have type N→ R. The two coroutines
“race” until one of them finishes.

E ‖ (x)F = λp.E (λe.δs. p e) (λx.δt. F (λe.δs. p e) t)

With this semantics, if either coroutine finishes it delivers
its result to p.

There are two subtle points in this interpretation. First,
if either coroutine terminates then it will discard the saved
continuation of the other coroutine. This is necessary if the
toplevel continuation is to have type N → R. Thus, at this
point we must consider an affine system. This is achieved
by replacing the two typing rules for variables with

Γ, x : A; ∆ ` x : A Γ; ∆, x : P ` x : P

The extra ∆ components here are tantamount to Weakening.
Technically, the need for Weakening can be seen in the fact
that the continuation (λe.δs. p e) ignores s.



The second subtle point is that, since p is used in both
arguments to E, we must type toplevel programs using (N→
R)→ R rather than (N→ R)( R.

Proposition 7. If x1, . . . , xn contains the free variables
of E ‖ (x)F , then

x1 : N, . . . , xn : N; ` E ‖ (x)F : (N→ R)→ R

in the affine variant.

At this point we have come up against the limitations
of linear (or affine) typing. Intuitively, we should be able
to type programs using (N → R) ( R because only one
of the two coroutines will finish first, and so the toplevel
continuation will only be used once. Put another way, we
have a harmless use of Contraction in the interpretation of ‖.
This limitation is perhaps not completely unexpected, since
linear typing is only an approximation to linear behaviour.
But it also illustrates that the problem of joining coroutines
raises type-theoretic subtleties, apart from the treatment of
the coroutines themselves.

9. CONCLUSIONS AND RELATED WORK
There are (at least) two main reasons why restricted type

systems for cps are of interest. The first is pragmatic, and
current: when cps is used in a compiler, we can leverage
types to communicate information from the source through
to intermediate and even back-end languages. A more con-
strained type system naturally captures more properties ex-
pected of source programs than less restricted type systems.

The second reason is conceptual. If control constructs use
continuations in a stylised way, then we may hope to better
understand these constructs by studying the typing prop-
erties of their semantics. An example of this is contained
in the observation that callcc breaks linear typing, while
exceptions do not.

For the case of pure simply-typed λ-calculus, the sound-
ness result we have given—the fact that the cps target ad-
heres to an linear typing discipline—is well known amongst
continuation experts. Surprisingly, we have not been able to
find the transform stated in the literature. But, as we have
emphasised, it is much more than call/return that obeys lin-
earity. There have certainly been hints of this in the litera-
ture, especially in the treatment of coroutines using one-shot
continuations [4]. Our focus on linearity grew out of a study
of expressiveness, where the distinguishing power of control
constructs was found to be intimately related to the number
of times a continuation could be used [15, 16].

It is important to note that our approach is very different
from Filinski’s linear continuations [5]. In our transforms
is is continuation transformers, rather than continuations
themselves, that are linear. Also, since Filinski used a linear
target language, he certainly could have accounted for lin-
early used continuations as we have; but his cbv transform
has an additional !, which essentially turns the principal(
we use into →.

In a different line [10], Polakow and Pfenning have also
investigated substructural properties of the range of cps,
and obtained excellent results. Their approach is quite dif-
ferent than that here in both aims and techniques; generally
speaking, one might say that we take a somewhat semantic
tack (focusing on use), where their approach is more exact
and implementation-oriented. Compared to the approach

here, an important point is their use of ordered contexts
to account for “stackability”. It is difficult to see how we
would do the same without further analysis, because in our
approach (except for coroutines) there is only ever one con-
tinuation, or a &-tuple of continuations, in the linear zone.
On the other hand, the typing rules in [10] treat different
occurrences of continuations differently, some linearly and
some not. As a result, it is not obvious to us how the type
system there might be reconstructed or explained, starting
from a domain equation.

We have obtained some preliminary completeness results
for linearly used continuations, but currently our analysis
there is incomplete. For example, we have identified sublan-
guages for the procedure call and exception cases, together
with syntactic completeness results, to the effect that each
term in the target is βη-equal to terms that come from trans-
form. But, presently, we use different “carved out” sublan-
guages (similar to [12]) for each source language, obtained
by restricting the types in the target; these languages obvi-
ously embed into the larger one here, but there is a ques-
tion as to whether these embeddings preserve completeness,
and whether the transforms themselves preserve contextual
equivalence relations (reflection, or soundness, is not prob-
lematic).

Besides these syntactic questions, there are a number of
challenges for denotational models. For example, given a
model of (cbv) λ-calculus, one might conjecture that there
is a linear cps model that is equivalent to it; here, by “equiv-
alent” we would ask for isomorphism, or a full and faithful
embedding, and not just an adequacy correspondence. For
lower-order source languages we have been able to obtain
completeness results based on the coherence space model,
but this analysis does not extend to higher order. A good
place to try to proceed further might be game models, which
have been used by Laird to give very exact models of control
[8], and where the linear usage of continuations is to some
extend visible.

Of course, one can ask similar questions for classes of mod-
els described categorically, as well as for specific, concrete
models.

In conclusion, we have displayed that many of the simple
control constructs use continuations linearly. The most im-
portant remaining conceptual question is why linearity keeps
turning up. A partial answer might be contained in the ob-
servation that each of these control constructs has a simple
direct semantics. For example, procedures as functions or
coroutines as resumptions. But this answer is incomplete.
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