
Linear Continuation-Passing ∗

Josh Berdine and Peter O’Hearn
({berdine, ohearn}@dcs.qmul.ac.uk)
Department of Computer Science, Queen Mary, University of London, London E1
4NS, United Kingdom

Uday Reddy and Hayo Thielecke
({u.reddy, h.thielecke}@cs.bham.ac.uk)
School of Computer Science, The University of Birmingham, Birmingham B15
2TT, United Kingdom

Abstract. Continuations can be used to explain a wide variety of control be-
haviours, including calling/returning (procedures), raising/handling (exceptions),
labelled jumping (goto statements), process switching (coroutines), and backtrack-
ing. However, continuations are often manipulated in a highly stylised way, and we
show that all of these, bar backtracking, in fact use their continuations linearly ;
this is formalised by taking a target language for cps transforms that has both
intuitionistic and linear function types.

1. Introduction

Continuations are the raw material of control. They can be used to
explain a wide variety of control behaviours, including calling/returning
(procedures), raising/handling (exceptions), labelled jumping (goto
statements), process switching (coroutines), and backtracking. In the
most powerful form, represented by callcc and its cousins, the pro-
grammer can manipulate continuations as first-class values. But few
languages give the programmer direct, first-class, access to continua-
tions; rather, they are “behind the scenes,” implementing other control
constructs, and their use is highly stylised. For many forms of control,
this stylised continuation usage can be captured by using continuations
linearly; meaning, roughly,1 that continuations are neither duplicated
nor discarded. We explore the variety of control constructs admit-

∗ This is an extended and revised version of a paper (c© Copyright 2001 by
ACM, Inc.) presented at the Third ACM SIGPLAN Workshop on Continuations,
January 2001 [4]. Berdine was partially supported by the Overseas Research Students
Awards scheme, and O’Hearn and Thielecke were partially supported by EPSRC
grant GR/L54639/01.

1 We mean more roughly than the usual informal connection between linearity
and neither duplicating nor discarding since, as we will discuss later, various notions
of “continuation” obey various usage constraints. In short, beware assumptions
regarding the meaning of “linear use of continuations.”

c© 2002 Kluwer Academic Publishers. Printed in the Netherlands.

LinUC.tex; 8/11/2002; 11:24; p.1

2 Berdine, O’Hearn, Reddy, Thielecke

ting such a discipline of linearly used continuations, which includes
procedure call and return, exceptions, goto statements, and coroutines.

Formally, for a number of control behaviours we present more-or-
less standard continuation-passing style (cps) transformations, which
we type using a combination of intuitionistic (ordinary) and linear
function types. The general pattern is that continuation transformers,
which accept continuations (or collections of continuations; discussed
in Section 4) as arguments, are typed as linear functions, while con-
tinuations themselves are intuitionistic functions. We also remark on
the combinations of features which break linearity of the continuation
transformers. Interestingly, the presence of named labels, by itself, does
not. And neither does backward jumping, which allows pieces of code to
be executed many times but is different in character from backtracking.

The basic idea can be seen in the type used to interpret untyped call-
by-value (cbv) λ-calculus. Just as Scott [30] gave a typed explanation
of untyped λ-calculus using the domain equation

D ∼= D → D

(or, equivalently, the recursive type µD. D → D) we can understand
linear use of continuations in terms of the domain equation

D ∼= (D → R)((D → R),

where (is the type of linear functions and R is a type of results.
If we were to change the principal (to an →, then this type could
accept callcc; but, as we later discuss, callcc duplicates the current
continuation, and is ruled out by this typing. Thus, even though one
might claim that the linear usage of continuations has nothing to do
with typing in the source language, we can nonetheless use types in the
target language to analyse control behaviour.

An essential point is that it is continuation transformers (functions
from continuations to continuations), rather than continuations, which
are linear functions. This is the reason we say that continuations are
used linearly. All of the interpretations we present are variations on
this idea.

Terminological Aside: There is some divergence in the literature on
the terminology used to describe where linearity resides. Some authors
refer to the argument to a function of type A (B as being linear,
rather than the function itself. We are following Girard’s original usage:
an element of type A(B is a linear function, and so the argument is
used in a linear fashion. Hence, in our transforms, it is the continuation
transformers, rather than the continuations, which are “linear.” �

LinUC.tex; 8/11/2002; 11:24; p.2

Linear Continuation-Passing 3

This paper is essentially an attempt to formalise ideas about con-
tinuation usage, some of which have been hinted at in the literature,
usually under the catch-phrase “one continuation [identifier] is enough”
[6, 7, 11, 23, 29, 39]. Indeed, part of what we say is known or suspected
amongst continuation insiders; however, we have not found any of the
linear typings we give stated anywhere.

2. The Target Language

We need a formulation of linear type theory built from the connectives
(, → and &, and use one based on DILL [3], which is a presentation
of linear typing that allows a pleasantly direct description of → (which
does not rely on decomposition through !).

The syntax of terms is given by the grammar:

M ::= x | λx.M | δx.M | M M | M M | 〈M,M〉 | πi M

Like standard λ-calculus, we have variables x, abstractions λx.M , and
applications M M . This abstraction and application is the usual, intu-
itionistic, call-by-name one. Linear abstractions δx.M and applications
M M are operationally equivalent to the intuitionistic versions, the
difference is in typing only. Likewise, additive pairs 〈M,M〉 and pro-
jections πi M are equivalent to the standard multiplicative versions
operationally, but differ in typing.

The syntax of types is given by the grammar:

P ::= R | P (P | A → P | P&P | X | µX.P pointed types
A ::= ρ | P types

Here, & is the type of additive products, X ranges over type variables,
µ builds recursive types, and ρ ranges over primitive types. Types P
are pointed while types A are not necessarily. Pointed types are those
for which recursion is allowed. In particular, primitive types used to
treat atomic data (such as a type for integers) should not be pointed
in a cps language. It would be possible to add type constructors for
sums, !, and so on, but we will not need them.

The distinction between pointed and non-pointed types is especially
vivid in the standard predomain model of the system, where a pointed
type denotes a pointed cpo (a chain-complete partial order with bot-
tom) and a type denotes a possibly bottomless cpo. The type R of
results denotes the two-point lattice, & is Cartesian product,(is strict
function space, and → is continuous function space. µ is interpreted
using the inverse limit construction. This is not an especially accurate

LinUC.tex; 8/11/2002; 11:24; p.3

4 Berdine, O’Hearn, Reddy, Thielecke

model of the language, because the interpretation of(validates Con-
traction and because the intuitive “abstractness” of the result type is
not accounted for (see the next section for further remarks on this sense
of abstractness). But the model is certainly adequate for any reasonable
operational semantics, and so serves as a useful reference point.

There is also a predomain variant of the original coherence space
model of linear logic. In this model a type denotes a family of coherence
spaces and a pointed type denotes a singleton such family [2]. Then
(is the usual linear function type, and {Ai}i∈I → P is a product∏

i∈I Ai ⇒ P where ⇒ is stable function space and
∏

i∈I is the direct
product of coherence spaces; this gives us a singleton family (that is, a
pointed type).

The system uses typing judgements of the form

Γ;∆ ` M : A

where the context consists of an intuitionistic zone Γ and a linear zone
∆. Intuitionistic zones are sets of associations x : A pairing variables
with types, and linear zones are sets of associations x : P pairing
variables with pointed types. Since we use sets, the Exchange rules
are built in, that is, the order within the zones is irrelevant.

Γ, x : A; ` x : A Γ;x : P ` x : P

Γ;∆, x : P ` M : Q

Γ;∆ ` δx.M : P (Q

Γ;∆1 ` M : P (Q Γ;∆2 ` N : P

Γ;∆1,∆2 ` M N : Q

Γ, x : A;∆ ` M : P

Γ;∆ ` λx.M : A → P

Γ;∆ ` M : A → P Γ; ` N : A

Γ;∆ ` M N : P

Γ;∆ ` M : P Γ;∆ ` N : Q

Γ;∆ ` 〈M,N〉 : P&Q

Γ;∆ ` M : P1&P2

Γ;∆ ` πi M : Pi

A key point of this type system is that in linear applications, the
operator and operand must depend upon distinct linear variables: in
our case, continuation variables. This is part of how duplication of con-
tinuations is prohibited. Also, in intuitionistic applications, the operand
cannot depend upon any linear variables since the operator’s use of its
argument is unconstrained. The rules for &-products indicate that while
both factors in a &-pair depend upon the same linear variables, when
one factor is projected from the pair, there is no way to access the other
factor. Logically, the effectiveness of these restrictions is witnessed by

LinUC.tex; 8/11/2002; 11:24; p.4

Linear Continuation-Passing 5

the fact that the Weakening and Contraction rules for the linear zone:

Γ;∆ ` M : A

Γ;∆, x : P ` M : A

Γ;∆, x : P, y : P ` M : A

Γ;∆, x : P ` M [x/y] : A

are not admissible, meaning that typing judgements derivable using
them cannot in general be derived without them. The affine variant
uses different rules for variables:

Γ, x : A;∆ ` x : A Γ;∆, x : P ` x : P

from which Weakening is admissible.2

We will frequently consider situations where some number of con-
tinuations are held in a single &-tuple in the linear zone. We introduce
the following syntactic sugar for them, using the evident n-ary form of
&-product, rather than the binary form.

− Γ;∆, 〈x1, . . . , xn〉 : P1& · · ·&Pn ` M : P stands for Γ;∆, y :
P1& · · ·&Pn ` M [π1 y/x1, . . . , πn y/xn] : P .

− δ〈x1, . . . , xn〉.M stands for δy. M [π1 y/x1, . . . , πn y/xn].

For simplicity in presenting the transforms, we handle recursive
types using the “equality approach,” where µX.P and its unfolding
P [µX.P/X] are equal, yielding the typing rule

Γ;∆ ` M : Q
P = Q

Γ;∆ ` M : P

We omit the details, but the reader may consult, for instance, Abadi
and Fiore’s comprehensive treatment [1].

3. Call/Return

The Fischer (continuation-first) cps transform [9, 10] is a prominent
historic explanation of procedure call/return in terms of continuations.
Here we transform untyped cbv (operator-first) λ-calculus into the
linear target language.

x
def= δk. k x

λx.M
def= δk. k (δk′.λx.M k′) (1)

M N
def= δk. M (λm. N (λn. (m k) n)) (2)

2 Provided any axioms for constants are varied similarly.

LinUC.tex; 8/11/2002; 11:24; p.5

6 Berdine, O’Hearn, Reddy, Thielecke

Here we see that, as mentioned in the introduction, source language
procedures are interpreted by continuation transformers: terms which
accept a continuation and yield another continuation based upon the
argument continuation, and thus have type

D
def= µD. (D → R)((D → R). (3)

(Henceforth, we do not explicitly define the types corresponding to
domains.) So a continuation transformer is effectively the difference,
or delta, between two continuations, and δ is used to form such
abstractions.3

PROPOSITION 1. If x1, . . . , xn contains the free variables of M , then

x1 : D, . . . , xn : D; ` M : (D → R)(R.

Here, notice that source variables always get sent to the intuitionistic
zone, where they can be duplicated or discarded freely. Arguments
which are continuations, on the other hand, always show up in the
linear zone in the course of typing a target term.

Intuitively, the result type is “abstract” in the sense that it is treated
uniformly, as if it were a type variable: a computation cannot branch
on, or even freely produce, values of result type. Technically, we do
not include constants of result type, and consequently there will be
no closed terms of result type (excepting divergent terms). This means
that a program must be provided with a means of producing a result. As
usual, this is accomplished by parameterising programs with a toplevel
(or initial) continuation, which the program invokes to terminate. This
continuation might be thought of as containing operating system code,
which is not otherwise accessible in the programming language. In
particular, we do not concoct some target language term to use for
the toplevel continuation, and then interpret programs as closed terms
of result type.

A common area of confusion is the relationship between linearity
and recursion. Since recursion can be defined via self-application in the
source language, will we not have to use a continuation many times,
or not at all, in the target? The short answer is no: continuations do
not need to be used more than once since we use recursive continua-
tion transformers to construct non-recursive continuations, and these
continuation transformers can be used many times.

We explain this by concentrating on the transform of the most basic
self-application of a variable:

f f = δk. f k f.

3 Although the technical definition differs, conceptually this notion of difference
is much the same as Moreau and Queinnec’s [18].

LinUC.tex; 8/11/2002; 11:24; p.6

Linear Continuation-Passing 7

f : D; ` f : D
D = (D → R)((D → R)

f : D; ` f : (D → R)((D → R)

f : D; ` f : (D → R)((D → R) f : D; k : D → R ` k : D → R

f : D; k : D → R ` f k : D → R

f : D; k : D → R ` f k : D → R f : D; ` f : D

f : D; k : D → R ` f k f : R

f : D; ` δk. f k f : (D → R)(R

Figure 1. Typing derivation of self-application in the target language.

This makes clear that, in the target language, recursion is effected
by a sort of self-application in which a continuation transformer f is
passed to a continuation f k which is obtained from f itself. If we were
to uncurry the type of continuation transformers, a call to f would
directly pass itself as one of the arguments. The important point here
is that self-application in the source does not imply that continuation
transformers are nonlinear functions; that is, it is entirely possible for
the continuation f k to be a nonlinear function, without forcing f to
be a nonlinear function. The typing derivation of self-application in the
target language (see Figure 1) shows how the recursive type must be
“unwound” once to type the operand occurrence of f .

On the other hand, recursion allows a term to diverge without ever
invoking its current continuation, but this in no way violates linear
typing. A full discussion of the dynamic behaviour of linearly typed
code is beyond the scope of this paper, but for the present it suffices to
note that a function which is “used linearly” is not necessarily “invoked
exactly once,” nor vice versa.

This may raise the question of why a linear, rather than an affine,
system is used. This question comes up again later, but for the issue at
hand, it may seem that an affine system is a better intuitive fit, but such
intuitive notions are unproven, rather brittle, and often misleading; as
evidenced by the observation above. Technically, type-soundness in a
linear system is stronger than in an affine system, and so the linear
system is preferred.

Finally, it is essential to note that linearity does not arise because of
any linear abstractions in the source, but because continuations are not
first-class. This is similar to O’Hearn and Reynolds’s work [21], where

LinUC.tex; 8/11/2002; 11:24; p.7

8 Berdine, O’Hearn, Reddy, Thielecke

linearity and polymorphism arise in the target of a translation from
Algol; this prevents the state from being treated, semantically, as if it
were first-class.

3.1. Other Transforms

We should emphasise that the preceding analysis is not dependent on
the Fischer transform. Instead of a continuation-first transform, we
could use a continuation-second transform [19, 22, 26] without affecting
the validity of the technical results, but a continuation-first transform
admits a briefer presentation and we can contrast continuation trans-
formers and continuations, rather than two types of continuations.
More explicitly, the continuation-second version of (3) is

D
def= µD. D → ((D → R)(R).

An interpretation based upon this type will have linearly used contin-
uations of type

D → R,

intuitionistically used continuations of type

(D → R)(R,

and intuitionistically used functions of type

D → ((D → R)(R).

An uncurried interpretation

D
def= µD. (!D ⊗ (D → R))(R

would eliminate the need to treat the last two types separately at the
expense of requiring tensor product⊗ and bang ! types; and there would
still be two types of continuations, one used linearly and one not. So
our use of a continuation-first transform is a key point which allows our
interpretation to use all continuations linearly. However, constrained
versions of similar unconstrained interpretations, as shown above, will
have some linearly used continuations corresponding to our continua-
tions, and some other types, possibly continuations, corresponding to
our continuation transformers, which will be used nonlinearly.

LinUC.tex; 8/11/2002; 11:24; p.8

Linear Continuation-Passing 9

4. Exceptions

Exceptions are a powerful, and useful, jumping construct. But their
typing properties are rather complex, and vary from language to lan-
guage. To study the jumping aspect of exceptions we focus on the
untyped procedures source language extended with raise and handle
primitives, which we illustrate with several examples.

If the body of a handle expression evaluates to a value, the handler
is ignored:

handle 42 (λe. e + 1) 42.

On the other hand, if the body raises a value, the handler is applied to
it:

handle (raise 41) (λe. e + 1) 42.

When the body raises a value, any unevaluated portion of the body is
ignored and the handler is applied immediately:

handle (raise (raise 41)) (λe. e + 1) 42
handle (1− (raise 41)) (λe. e + 1) 42.

When the body of a handle expression raises, the nearest enclosing
handler is applied:

handle
(
handle (raise 13) (λe. e + 29)

)
(λe. e + 1) 42.

When the body of a handler raises, the next enclosing handler is
applied:

handle
(
handle (raise 13) (λe. raise (e + 28))

)
(λe. e + 1) 42.

Finally, a characteristic feature of exceptions: When a value is raised, it
is the dynamically enclosing handler which is applied. The statically en-
closing handler, the nearest enclosing handler in the program code, has
no significance. Hence when the body of a handle expression evaluates
to a value, the handler is forgotten and will never be applied:(

λf. handle (f 41) (λe. e + 1)
) (
handle (λx. raisex) (λe. e− 1)

)

(
λf. handle (f 41) (λe. e + 1)

)
(λx. raisex)

 handle (raise 41) (λe. e + 1)
 42.

So, there is no connection between raise and λe. e−1 underlined above.
Instead, raise refers to the nearest enclosing handler when a value is
raised, λe. e + 1.

LinUC.tex; 8/11/2002; 11:24; p.9

10 Berdine, O’Hearn, Reddy, Thielecke

As these examples show, evaluating an expression will result in ei-
ther returning a value to the expression’s context, or raising a value,
meaning that the current exception handler is applied to the value.
In standard cps fashion, an expression’s context is represented as a
continuation, and so returning is interpreted as throwing to the return
continuation. Likewise, the current exception handler is represented as
a continuation, and so raising is interpreted as throwing to the handler
continuation. Since an expression cannot both return and raise, only
one of the return and handler continuations will be invoked. And since
an expression must either return or raise, one of the return and handler
continuations must be invoked.

Formally, we proceed as before, but now using a domain equation

D ∼= (D → R)︸ ︷︷ ︸
return

& (D → R)︸ ︷︷ ︸
handler

((D → R). (4)

Conceptually, such &-pairs of continuations are two continuations
which share a common ancestor continuation. Linear use of these pairs
means that (one and) only one continuation can be used, so in particu-
lar, passing one continuation as an argument to another is disallowed.
Note that the interpretation in the previous section is simply a de-
generate case of this, and in later sections we will see that this idea
generalises to &-tuples.

Terminological Aside: At this point it becomes significant that
there are two different notions of “continuation” involved. Intuitively,
one notion of continuation is that of “the destination of a jump-with-
arguments,” and another notion is that of “an abstraction of the effects
of executing the rest of the computation.” In the case of procedure
call/return, these two notions coincide (elements of D → R), and so
the term “continuation” refers to both notions simultaneously. But for
other source languages these two notions do not generally coincide, for
instance, in this interpretation of exceptions, “rest of the computation”
continuations are represented by &-pairs of “destination of a jump”
continuations, which, as for procedures, are represented as elements of
D → R.

As in the treatment of procedures, the “rest of the computation”
continuations are used linearly. This linear usage imposes some con-
straints on how the constituent “destination of a jump” continuations
are manipulated, which we refer to using the terminology “passed
linearly.” In (4) for example, pairing the return and handler contin-
uations with & constrains their use in that one or the other may
(and must) be used, but referring to this constraint as “used linearly”
is somewhat misleading and inaccurate, so we say “passed linearly”

LinUC.tex; 8/11/2002; 11:24; p.10

Linear Continuation-Passing 11

instead. It may be helpful to think of types such as (4) as genuinely
describing multiple-argument functions; then each argument is passed
linearly while the combination of all the arguments is used linearly. For
types such as (3) and (10), the arguments are both used and passed
linearly. The general situation for all the interpretations presented in
this paper is that “rest of the computation” continuations are always
used linearly, and “destination of a jump” continuations are always
passed linearly.

Terminologically, this situation is quite unfortunate and so we use
the term “continuation” for “destination of a jump” continuations
(which will always be elements of T → R for some type T), and refer
to “rest of the computation” continuations by their representation, for
example: &-pairs of continuations. But it is important to realize that
linear use of “rest of the computation” continuations is the common
thread which connects all the interpretations we present. �

A typed version of (4) can be derived from a direct semantics,
following Moggi. That is, we start with

(A → B)∗ = A∗ → B∗ + E,

followed by a standard continuation semantics which gives us

A∗ → B∗ + E = ((B∗ + E) → R)((A∗ → R),

and finally a manipulation using the isomorphism

(B∗ + E) → R ∼= (B∗ → R)&(E → R).

Continuing our technical development, the type (4) is the basis
for a double-barrelled cps transform where two continuations are
manipulated: return and handler [38].

x
def= δ〈k, h〉. k x

λx.M
def= δ〈k, h〉. k (δ〈k′, h′〉. λx. M 〈k′, h′〉)

M N
def= δ〈k, h〉.M 〈λm. N 〈m 〈k, h〉, h〉, h〉

raiseM
def= δ〈k, h〉.M 〈h, h〉

handleM λe.H
def= δ〈k, h〉.M 〈k, λe. H 〈k, h〉〉

Note that the first three cases do not manipulate the handler contin-
uation, just pass it along. The transform of raiseM indicates that M is
evaluated and the resulting value is thrown to the handler continuation,
and if the evaluation of M results in an exception being raised, the
current handler continuation is used. Correspondingly, the transform

LinUC.tex; 8/11/2002; 11:24; p.11

12 Berdine, O’Hearn, Reddy, Thielecke

of handleM λe.H evaluates M with the same return continuation but
installs a new handler continuation which given e, evaluates H with
(handleM λe.H)’s continuations.

The transform of raise both discards the current continuation, k,
and duplicates the handler continuation, h, within a &-pair, but the
&-pair (that is, the “rest of the computation” continuation) is neither
duplicated nor discarded. Likewise, the transform of handle duplicates
the current continuation, but the &-pair is used linearly. Components
of a &-pair may be freely duplicated and discarded without violating
the linearity property since the constraint on how &-pairs may be used
ensures that (one and) only one component may be accessed, as seen
in the transforms of variables and abstractions.

Note that since the transform makes use of both the limited ability to
discard and to duplicate continuations provided by &, using an affine
system which allows unrestricted discarding would not eliminate the
need to use &-pairs, and hence the added Weakening rule would never
be exercised. So in this case (and for all the cases where continuations
are downward, as we will see later), Weakening is irrelevant. Conceptu-
ally and informally, this is true since in these cases, all the continuations
share a common ancestor, the toplevel continuation, and so must all
be in one &-tuple. The types used to interpret programs require an
element of the result type in some form or another, and abstractness
of R ensures that the only way to get one is by eventually invoking the
toplevel continuation. So one of the continuations in the &-tuple must
be invoked, and hence Weakening is impotent.

It may be useful to point out that the “abort” operator common
in the continuations literature is a historical precursor to exception
mechanisms [32], and can be seen as a special case. If every program
immediately installs a handler, and then no other handlers are installed,
then raise has the intended meaning of abort. Although abort is often
intuitively thought of as discarding the current continuation, this is
not problematic since the current continuation is in a &-pair with the
handler (abort) continuation.

PROPOSITION 2. If x1, . . . , xn contains the free variables of M , then

x1 : D, . . . , xn : D; ` M : (D → R)&(D → R)(R.

We try to give a feel for the jumpy flavour of this semantics with
the following example:

handle (x (raise y))λe.H. (5)

LinUC.tex; 8/11/2002; 11:24; p.12

Linear Continuation-Passing 13

Here x and y are free identifiers which an environment will give values
to. The transform is

δ〈k, h〉. (δ〈k1, h1〉. (δ〈k2, h2〉. k2 x)
〈λm. (δ〈k3, h3〉. (δ〈k4, h4〉. k4 x) 〈h3, h3〉)

〈m 〈k1, h1〉, h1〉
, h1〉)

〈k, λe.H 〈k, h〉〉.

Here, linear β-redexes do not correspond to any computational steps
in the source language, but instead serve to arrange code (they are so-
called “administrative” redexes [22]). After eliminating these redexes
we have

δ〈k, h〉. (λm. (λe.H 〈k, h〉) y) x.

So (5) is transformed into a term which given return and handler
continuations, throws away the value of x, binds e to the value of y,
and then runs the body of the handler with the given continuations.
Notice that the value of x is never applied to anything, as would be the
case if raise y was interpreted as returning some special value which a
modified application knew to pass upward. Instead the interpretation
of raise y jumps past the remaining code directly to the handler. So
while this semantics is in some sense equivalent to the +E semantics,
in another sense it is very different.

5. Duplicating Continuations

A crucial reason Propositions 1 and 2 hold is that in the application
of an intuitionistic function, the argument cannot have any free linear
variables. This has the effect of precluding upward continuations. In
the procedures source language, a procedure (closure) is upward if it is
returned or stored [13]. In the presence of other control behaviours, this
definition must be altered accordingly. In the language with exceptions,
for instance, a procedure raised as an exception is also upward. Hence,
in cps a continuation is upward if it is thrown to another continuation.
(Note that we do not consider cases where continuations can be stored.)
Inversely, a continuation is downward if it is not upward. Concretely,
this is demonstrated by the term (which does not type-check)

δk. k (δh.λx. k (δl.λy. l x))

in which k is an upward continuation, that is, wrapped in a closure
which is thrown to another continuation; in this case, k itself. This

LinUC.tex; 8/11/2002; 11:24; p.13

14 Berdine, O’Hearn, Reddy, Thielecke

term, which corresponds to

callccλk.λx. throw k λy. x

in the source language, exhibits the backtracking behaviour leading
to the higher-order spaghetti code associated with callcc. We use
callcc, which keeps procedures and continuations separate, rather
than call/cc, which merges procedures and continuations, since the
latter would require modification of the interpretation of procedures.
The cps transform of callcc shows how continuations are duplicated,
breaking linearity.

callcc
def= δk. k (δh.λf. (f h) h)

This fails to type-check since h, which is δ-bound and hence used lin-
early, is passed to a nonlinear function, f h, which may freely discard
or duplicate h. Also, h is explicitly duplicated since it is passed to f as
both its return continuation and argument.

Similar backtracking behaviour can be seen in snobol and Prolog,
and their continuation semantics do not obey a discipline of linear
continuation-passing [15, 35].

6. Reified Continuations, and Upward versus Downward

It might be expected that the reason continuations are passed linearly
in the call/return and exceptions cases is that they are not reified, which
is to say directly named by program variables, as callcc achieves.
After all, source language variables may appear any number of times
in a term. This reasoning is only partially valid. To explain this, we
consider a language where continuations are reified, but still passed
linearly.

We consider a language of arithmetic expressions, with a means of
labelling a subexpression.

E ::= n | E + E | l : E | goto l E

A goto statement sends a value to the position where the indicated
label resides. We call such jumps forward since they are to code which
has not been previously executed, even though the destination code
may textually appear “before” the goto statement. Note that, as ev-
erything is an expression, execution proceeds not from left to right, but
from most deeply to least deeply nested. As an example,

l : (2 + (l : (3 + l′ : (goto l 7))))

LinUC.tex; 8/11/2002; 11:24; p.14

Linear Continuation-Passing 15

evaluates to 9, as evaluation jumps past 3 + [], effectively sending
7 to the hole in l : (2 + []). This language provides the jumping
behaviour of a multiple exception mechanism, although it would be
very inconvenient to use since the same code must be used whether
a value is returned normally or sent directly to a label. Regardless of
inconvenience, intervening code can be jumped over, even if labelled.

Labelling an expression and sending to it with goto is effectively a
first-order version of naming a continuation with callcc and invoking it
with throw. Following this analogy, labelling an expression associates
the current continuation of the expression with the label name, and
goto l effects a throw to the continuation associated with l. The crucial
point is that although continuations are reified, they cannot escape the
context in which they are originally defined. That is, in

l : E

l cannot escape out of E. On the other hand, in the analogous term in
the language with first-class continuations

callccλk. M

k can indeed escape out of M , as the example in the previous section
demonstrated. This means that continuations are not upward in the
language of forward jumps, only downward.

Unlike the previous cases, this language is not higher-order; so we
interpret expressions with the (non-recursive) types

(N → R)︸ ︷︷ ︸
current

& (N → R)& · · ·&(N → R)︸ ︷︷ ︸
labels

(R,

where N is a primitive type of natural numbers. The first continuation
in the &-tuple is the current continuation, and the others represent the
labels free in the source expression.

n~l

def= δ〈k,~l〉. k n

E + F~l

def= δ〈k,~l〉. E~l
〈λe. F~l

〈λf. k (e + f),~l〉,~l〉

ln+1 : E~l

def= δ〈k,~l〉. E~l,ln+1
〈k,~l, k〉

goto li E~l

def= δ〈k,~l〉. E~l
〈li,~l〉

~l is a list of labels l1, . . . , ln. For precision, the transform of E is
parameterised by ~l containing the labels free in E.

In the l : E clause, since the two occurrences of k are within a
&-tuple, linearity is not violated.

LinUC.tex; 8/11/2002; 11:24; p.15

16 Berdine, O’Hearn, Reddy, Thielecke

PROPOSITION 3. If ~l (= l1, . . . , ln) contains the free labels of E, then

; ` E~l
: (N → R)& · · ·&(N → R)︸ ︷︷ ︸

n+1

(R.

The moral of this story is that we cannot attribute the failure of
linearity in the treatment of callcc only to the ability to name con-
tinuations (in the presence of Contraction and Weakening of source
language variables). That is, reified continuations are not necessarily
used nonlinearly. However, reified continuations together with higher-
order procedures yield reified upward continuations, which suffice to
break linearity.4

7. Backward Jumps

Next, one might think that the linear continuation-passing in the previ-
ous section is due to the absence of backward jumps. That is, if one has
backward jumps, cannot one jump to the same continuation multiple
times, thus violating linearity?

The answer is no, backward jumping does not require nonlinear
continuation-passing. In fact, this point has already been made in the
treatment of untyped λ-calculus, which involves self-application, but it
is helpful to look at it in a setting where jumping is effected by explicit
manipulation of reified continuations rather than by the call/return
mechanism’s implicit manipulation of non-reified continuations.

In order to bring the central issues out with a minimum of dis-
traction, we discuss how to define a single recursive label. The source
language consists of commands, C, and programs P .

C::= dummy | goto l | C;C | · · ·
P ::= l :C

The key feature is that the labelled command can contain jumps to the
beginning of the command, so multiple jumps to the label are possible.

To interpret this language we use a type of command continuations

K
def= S → R

where S is the type of stores. (When performing backward jumps it
is necessary to communicate information, if one is not to always loop
indefinitely. So it is reasonable here to consider state; alternatively, we

4 Other mechanisms giving reified continuations indefinite extent, such as the
ability to store them, also suffice.

LinUC.tex; 8/11/2002; 11:24; p.16

Linear Continuation-Passing 17

could consider labels that accept a number of arguments.) Commands
are interpreted with the type

K︸︷︷︸
current

& K︸︷︷︸
label

(K.

The first argument is the current continuation, which represents the
computation to perform when execution proceeds normally to the next
command, and the second is the denotation of the (single) label l. The
transform of commands is then straightforward.

dummy
def= δ〈k, l〉. k

goto l
def= δ〈k, l〉. l

C0;C1
def= δ〈k, l〉. C0 〈C1 〈k, l〉, l〉

A program l : C effectively binds l, and results in a continuation
transformer of type

K (K

which accepts a toplevel (current) continuation. Divergence is possible
in this language since jumps to l within C go back to the beginning of
l : C, so we use a standard fixed-point combinator

Y : (P → P) → P.

At first sight the desired transform appears to be incompatible with
linearity. Indeed, were we not restricting the use of continuations, we
could interpret l : C with the type

K → K

and define the transform as

l :C def= λk. Yλh. C 〈k, h〉 (6)

This approach, in which a recursive continuation is defined directly
using Y : (K → K) → K, is the one typically taken in the contin-
uation semantics of goto. Although the dynamic behaviour of this
interpretation is linear, as can more easily be seen by rewriting (6)

l :C k = C 〈k, l :C k〉,

the analogous version which passes continuations linearly will not type-
check due to the free continuation in the argument of Y. However, by
moving up a level in the types we can close the argument of Y to avoid
this problem

l :C def= Yλt. δk. C 〈k, t k〉. (7)

LinUC.tex; 8/11/2002; 11:24; p.17

18 Berdine, O’Hearn, Reddy, Thielecke

Note that the term we take a fixed-point of has type (K (K) →
(K (K), so the definition of a program makes use of a recursive con-
tinuation transformer, but continuations are not themselves recursive.
It is curious how linear typing forces fixed-points to be taken at higher
types. The upshot is that different backward jumps to l correspond to
distinct continuations, which are generated by fixed-point unwinding.
(This treatment is very similar to the handling of recursion in untyped
λ-calculus where continuation transformers are self-applied to unwind
to a fixed-point, but continuations are not recursive. The only differ-
ence here is that we explicitly take a fixed-point, rather than rely on
self-application.)

To make this concrete, it is helpful to consider an example of the
effect of unwinding. Explicitly, unwinding (7) twice we have

l :C = δk. C 〈k, C 〈k, (Yλt. δk. C 〈k, t k〉) k〉〉

from which we see that the first jump to l invokes

C 〈k, (Yλt. δk. C 〈k, t k〉) k〉

while the second jump to l invokes

(Yλt. δk. C 〈k, t k〉) k

and so on.
This use of higher-order recursion might seem questionable, so some

formal calculation is worthwhile to provide some comfort that all is well.
To do this, we appeal to the standard predomain model of the target
language to give a proof sketch of the adequacy of taking fixed-points
at higher types. In this model,

δk. Yλh. c 〈k, h〉 = Yλt. δk. c 〈k, t k〉

for any c : K&K (K. This holds since, for all n ≥ 0,

(λh. c 〈k, h〉)n⊥ = (λt. δk. c 〈k, t k〉)n⊥ k

by a straightforward induction on n. So the two chains have the same
elements, and hence the same least upper bounds:⊔

{(λh. c 〈k, h〉)n⊥ | n ≥ 0} =
⊔
{(λt. δk. c 〈k, t k〉)n⊥ k | n ≥ 0}.

Therefore, by continuity of λx. x k,⊔
{(λh. c 〈k, h〉)n⊥ | n ≥ 0} =

⊔
{(λt. δk. c 〈k, t k〉)n⊥ | n ≥ 0} k,

and hence
Yλh. c 〈k, h〉 = (Yλt. δk. c 〈k, t k〉) k,

LinUC.tex; 8/11/2002; 11:24; p.18

Linear Continuation-Passing 19

from which the result follows. The remainder of a full adequacy result
is straightforward. (While this argument appeals to a specific model,
analogous operational facts can be shown.)

With this as background we move on to a full language, the “small
continuation language” of Strachey and Wadsworth [33]. We pre-
emphasise that our treatment of recursive labels is not identical to
that of Strachey and Wadsworth, as we must go up a level in the types
to accommodate linearity, and our treatment of label-valued expres-
sions exploits the fact that the only meaningful operation on such an
expression in the language is to jump to it.

The source language consists of expressions, E, and commands, C.

C::= p | dummy | C0;C1 | E→C0, C1 | gotoE

| §C0; l1 :C1; . . . ; ln :Cn §| | resultisE

E::= x | l | true | false | E0→E1, E2 | valofC

Here p is a primitive statement, x is a variable, and l is a label. Note
that we do not include explicit loops since they are redundant, though
they could be easily added.

Together valof and resultis provide a form of procedure call and
return which avoids issues of variable binding. Labelled commands l :C
and goto provide a jumping mechanism. Additionally, since blocks may
contain free labels which are bound by enclosing blocks, the machinery
for a multiple exception mechanism is also present. Such exceptions
would be parameterless since jumps to labels do not carry values, but
exception parameters could be passed through the store.

We extend the target language with a primitive type of booleans, B.

Γ; ` tt : B Γ; ` ff : B

Γ;∆ ` M : B Γ;∆′ ` N : A Γ;∆′ ` O : A

Γ;∆,∆′ ` ifM thenN elseO : A

Primitive commands are mapped to their interpretations in the
target language by

JpK : K (K.

Commands are interpreted with the types

K︸︷︷︸
current command

& (B → K)︸ ︷︷ ︸
current return

& K︸︷︷︸
failure

&K& · · ·&K︸ ︷︷ ︸
labels

(K

The first argument in the &-tuple is the current command continuation.
Next, the current return continuation is the expression continuation

LinUC.tex; 8/11/2002; 11:24; p.19

20 Berdine, O’Hearn, Reddy, Thielecke

to which a resultis command will deliver a value. After that, the
failure continuation is a constant command continuation invoked when
a valof command “falls off the end” without performing a resultis
command. Finally, the remaining command continuations are the
denotations of the labels in scope.

Similarly, expressions are interpreted with the types

(B → K)︸ ︷︷ ︸
current return

& K︸︷︷︸
failure

&K& · · ·&K︸ ︷︷ ︸
labels

(K.

Here the first argument in the &-tuple, the current return continuation,
is the expression continuation to which the value of the expression will
be delivered. The remaining arguments: the failure continuation and
command continuations, are handled as above.

The transforms, given in Figure 2, make use of a divergent term

diverge
def= Yλx. x : P

and are parameterised by a sequence of labels, l1, . . . , ln, which
contains the labels free in the term being transformed. In defin-
ing the transforms, we use the notation Xn

i=1M as a shorthand for
M [1/i],M [2/i], . . . ,M [n/i].5

Strachey and Wadsworth’s semantics of gotoE uses a current con-
tinuation which “projects” its argument, performing a sort of dynamic
type-checking. But they do not specify what happens if the check fails.
Here we specify that execution diverges, but other choices are possible:
the failure continuation which is being carried around could be used,
for instance.

The interpretation of a valof expression

valofC~l

def= δ〈r, f,~l〉. C~l
〈f, r, f,~l〉

installs the failure continuation as the current continuation, and installs
the current expression continuation as the return continuation, and
executes C. The interpretation of a resultis command

resultisE~l

def= δ〈k, r, f,~l〉. E~l
〈r, f,~l〉

evaluates expression E with the current return continuation as the
expression continuation, ignoring the current continuation.

As mentioned earlier, label-valued expressions are handled specially.
In the transform of a label

l~l
def= δ〈r, f,~l〉. l

5 We use “X” (Chi) for the iterated comma in analogy with “Σ” (Sigma) for
iterated sum and “Π” (Pi) for iterated product.

LinUC.tex; 8/11/2002; 11:24; p.20

Linear Continuation-Passing 21

x~l

def= δ〈r, f,~l〉. r x

l~l
def= δ〈r, f,~l〉. l

true~l

def= δ〈r, f,~l〉. r tt

false~l

def= δ〈r, f,~l〉. r ff

E0→E1, E2~l

def= δ〈r, f,~l〉. E0~l
〈λx. (ifx thenE1~l

elseE2~l
)

〈r, f,~l〉
, f,~l〉

valofC~l

def= δ〈r, f,~l〉. C~l
〈f, r, f,~l〉

p~l

def= δ〈k, r, f,~l〉. JpK k

dummy~l

def= δ〈k, r, f,~l〉. k

C0;C1~l

def= δ〈k, r, f,~l〉. C0~l
〈C1~l

〈k, r, f,~l〉, r, f,~l〉

E→C0, C1~l

def= δ〈k, r, f,~l〉. E~l
〈λx. (ifx thenC0~l

elseC1~l
)

〈k, r, f,~l〉
, f,~l〉

gotoE~l

def= δ〈k, r, f,~l〉. E~l
〈diverge k, f,~l〉

§C0; l1 :C1;...; ln :Cn §|~l
def= δ〈k, r, f,~l〉.

(λ〈Xn
i=1ti〉. C0~l,Xn

i=1li
〈t1 〈k, r, f,~l〉, r, f,~l

,Xn
i=1ti 〈k, r, f,~l〉〉)

(Yλ〈Xn
i=1ti〉.
〈Xn−1

i=1 δ〈k, r, f,~l〉.
Ci~l,Xn

i=1li

〈ti+1 〈k, r, f,~l〉, r, f,~l

,Xn
i=1ti 〈k, r, f,~l〉〉

, δ〈k, r, f,~l〉.
Cn~l,Xn

i=1li

〈k, r, f,~l

,Xn
i=1ti 〈k, r, f,~l〉〉〉)

resultisE~l

def= δ〈k, r, f,~l〉. E~l
〈r, f,~l〉

Figure 2. Transforms of expressions and commands

LinUC.tex; 8/11/2002; 11:24; p.21

22 Berdine, O’Hearn, Reddy, Thielecke

the label is not passed to the current expression continuation but is
instead itself returned. This is why the type of the return continuation
is B → K rather than (B + K) → K, which Strachey and Wadsworth
use. The result of this treatment is that returning a label with resultis
has the same effect as jumping to the label with goto.

resultis ll = goto ll

This is adequate since the only thing to do with such a returned label
is to immediately jump to it, that is, labels are not truly first-class. A
more standard transform

l~l = δ〈r, f,~l〉. r l

will not type-check in a linear system since both r and l come from the
same &-tuple. Furthermore, extensions to the language such as variable
binding or assignment constructs require the label to be returned to the
return continuation, but with the addition of such constructs backtrack-
ing behaviour is possible since labels are reified upward continuations.
Such extensions are not problematic if restricted to non-label values,
however.

The necessity of this exploitive treatment demonstrates that the
fullest and most natural combinations of some control constructs which
individually pass continuations linearly, do not jointly admit a disci-
pline of linear continuation-passing. In other words, the interactions
between different control constructs can make the expressive power of
the whole greater than that of the sum of the parts.

PROPOSITION 4.

1. If x1, . . . , xm contains the free variables of C, and ~l (= l1, . . . , ln)
contains the free labels of C, then

x1 : A1, . . . , xm : Am; ` C~l
: K&(B → K)&K&K& · · ·&K︸ ︷︷ ︸

n

(K

2. If x1, . . . , xm contains the free variables of E, and ~l (= l1, . . . , ln)
contains the free labels of E, then

x1 : A1, . . . , xm : Am; ` E~l
: (B → K)&K&K& · · ·&K︸ ︷︷ ︸

n

(K

LinUC.tex; 8/11/2002; 11:24; p.22

Linear Continuation-Passing 23

8. Coroutines

One view of a continuation is as the state of a process, and it has been
known for some time that the combination of state and labels can be
used to implement coroutines [25].

To design a continuation semantics of coroutines we do not, however,
need the full power of the features used in these encodings; namely,
first-class control and higher-order store. But we need to do more
than simply have several continuations, one for each coroutine, and
swap them. The extra ingredient that is needed is the ability to pass
the saved state of one coroutine to another, so the other coroutine
can then swap back; this is implemented using a recursive type and
upward continuations. For simplicity, we concentrate on the case where
each program consists of two coroutines built from a small command
language.

The language consists of boolean expressions, E, commands, C, and
programs, P , which set up two global coroutines.

E ::= true | false | E nor E expressions
C ::= skip | swap | outputE | C ; C commands
P ::= C ‖C programs

Execution begins with the left C. When swap is executed, execu-
tion of the currently executing coroutine is paused and execution of
the other begins. Execution continues until another swap command is
encountered. For example, executing

output true ; swap ; output true ‖ output false ; swap (8)

will output true, then false, and then true. In this simple setting there
is no facility for a program to terminate and return an answer as one
might expect. Instead, all programs diverge after having output finitely
many booleans. More precisely, when execution of a coroutine “falls off
the end,” the coroutine will swap indefinitely. For example, executing

skip ‖ output true ; swap ; output false (9)

will output true, and then false before diverging. This scenario is not
as strange and contrived as it might first appear. Programs in this
language are similar to operating system processes which run forever,
accomplishing their tasks by side-effecting the machine state but never
terminating with an answer. We discuss the reasons behind this choice
of source language at the end of the section.

To interpret this language, we make use of the booleans added to the
source language in Section 7 and add an output facility to the target

LinUC.tex; 8/11/2002; 11:24; p.23

24 Berdine, O’Hearn, Reddy, Thielecke

language:

Γ; ` M : B Γ; ` N : R

Γ; ` outputM ;N : R

Several presentations of the intended meaning of outputM ;N are pos-
sible. The first is imperative and says that in executing outputM ;N ,
first M is evaluated to a boolean value, then this value is output,
and then N is executed. Alternatively, for the denotationally minded
reader who may be uncomfortable with an imperative semantics of the
mathematical metalanguage, since R is an abstraction of the effects in
the language, outputM ;N can be thought of as the combination of
outputting the value of M and the effects N represents. For the pre-
sentation here we leave R and outputM ;N abstract, but the following
definitions illustrate the idea:

R
def= µR. !B⊗R

outputM ;N def= (!M,N)

Although ! and ⊗ do not appear in the target language presented, the
intent should be clear: R is a type of linear streams and outputM ;N
is the stream with first element M and remainder N .

The domain of continuations is

K ∼= K (R.

Note that since the argument of a continuation is also a continuation,
continuations are upward. We interpret source commands with the type

K (K.

(Note that since the treatment of jumps in Section 7 is independent
of the type of command continuations, and a labelled command is
interpreted with a command continuation transformer, extending the
language of coroutines with jumps is straightforward.) Intuitively, the
meaning of a command depends upon both the commands following
it, and upon the other coroutine. For example, the leftmost occur-
rence of output true in (8) depends upon swap ; output true and
output false ; swap. Both of these are represented as continuations, so,
unrolling the recursive type on the right hand side of the interpretation
of commands once, we have

K︸︷︷︸
current

(K︸︷︷︸
blocked

(R. (10)

So the interpretation of a command accepts a continuation which rep-
resents the rest of the (current) coroutine, accepts a continuation which

LinUC.tex; 8/11/2002; 11:24; p.24

Linear Continuation-Passing 25

is the control state of the other (blocked) coroutine, and then runs. This
treatment is essentially store-passing style of a stored continuation for
the control state of the blocked coroutine.

Note that the typing of this interpretation is very different from
those in preceding sections since the two argument continuations are
passed independently,6 rather than in a &-pair. Here, when a continu-
ation is invoked, another continuation is passed to it. This means that
the invoked and argument continuations cannot come from the same
&-pair, and hence both current and blocked continuations must be used
and cannot share a common ancestor continuation.

We can now give the cps transform of most of the commands:

C1 ; C2
def= δc. δb. C1 (δb′. C2 c b′) b = δc. C1 (C2 c)

skip
def= δc. δb. c b = δc. c

swap
def= δc. δb. b c

The clause for sequence says that the effect of executing C1 ; C2 with
current and blocked continuations c and b is the effect of executing
C1 with current continuation δb′. C2 c b′ and blocked continuation b.
This means that once C1 is finished, it will pass the new control state
of the blocked coroutine, b′, since it might have changed during the
execution of C1, and then C2 will be executed with current and blocked
continuations c and b′.

The clause for skip says that the effect of executing skip with cur-
rent and blocked continuations c and b is simply the effect represented
by c, leaving the blocked continuation unchanged.

The clause for swap says that the effect of executing swap with
current and blocked continuations c and b is the effect represented by
b, using c as the blocked continuation. This passes control from the
running coroutine to the blocked coroutine since the blocked continu-
ation is invoked with the current continuation passed for the blocked
continuation.

Source expressions are interpreted with the type of booleans, B.
Since expressions are pure, we use the following simple interpretation:

JtrueK def= true
JfalseK def= false

JE1 nor E2K
def= ¬(JE1K ∨ JE2K)

Using this, the cps transform of expressions is:

E
def=

{
tt if JEK
ff otherwise

6 or in a ⊗-pair if we were to uncurry the type of commands

LinUC.tex; 8/11/2002; 11:24; p.25

26 Berdine, O’Hearn, Reddy, Thielecke

Now we can give the transform of the remaining command:

outputE
def= δc. δb. outputE; c b

This clause says that the effect of executing outputE with current and
blocked continuations c and b is the combination of outputting E and
the effect represented by c, leaving the blocked continuation unchanged.

To interpret source programs we must define a continuation which
represents the behaviour of a coroutine when it falls off its end. To do
so we make use of a fixed-point combinator with a slightly nonstandard
type:

Y◦
def= Yλy. λt. t (y t) : (P (P) → P

We need to use this type since the usual one is (P → P) → P but we
need to construct a recursive continuation, so we would need to use the
combinator at type (K → K) → K, which does not fit well with linear
continuation-passing.

The thought of a fixed-point combinator of type (P (P) → P
may cause some anxiety since the argument function has type P (P .
This means that the function being recursively defined must be used,
so there can be no base case and hence all recursive functions defined
with Y◦ must diverge. But this is not problematic in this setting since,
as all source programs diverge, we want to define divergent functions.
Also, we have no need to identify all divergent functions and we will
use many different functions which do some output and then diverge.

Above we specified that a coroutine swaps indefinitely when it falls
off its end. We define the continuation which represents the behaviour
of a coroutine when it falls off its end, f, as follows:

f
def= Y◦ swap : K

Note that
f = δb. b f,

so f is the continuation which takes in the control state of the other
coroutine, b, and immediately transfers control by invoking b and pass-
ing itself as the blocked continuation. Therefore swapping with current
and blocked continuations c and f results in invoking c with blocked
continuation f, that is, the same effect as skip:

swap c f = f c = c f

skip c f = c f

Also, since f f is a term of type R which reduces to itself without any
output, f f is “bottom” for type R.

LinUC.tex; 8/11/2002; 11:24; p.26

Linear Continuation-Passing 27

Finally, we interpret source programs with the answer type,7 R, and
the transform of programs is:

C1 ‖C2
def= C1 f (C2 f)

As an example, we give the transform of (9). Note that although
we have not presented the equational theory of the target language, we
will make use of the usual β axiom here.

skip ‖ output true ; swap ; output false
= skip f (output true ; swap ; output false f)
= f (output true ; swap ; output false f)
= output true ; swap ; output false f f

= output true (δb′. swap ; output false f b′) f

= output tt; swap ; output false f f

= output tt; swap (δb′. output false f b′) f

= output tt; f (δb′. output false f b′)
= output tt; (δb′. output false f b′) f

= output tt; output ff; f f

PROPOSITION 5.

1. ; ` E : B

2. ; ` C : K (K

3. ; ` P : R

Our choice of source language may seem quite strange so we briefly
discuss the technical issues involved in this choice. Typing problems
arise with a source language in which the coroutines can terminate.
Since a coroutine has two continuation arguments, current and blocked,
if it is to terminate by giving a value to the toplevel continuation,
something must be done with the blocked continuation, since in a lin-
ear system it cannot simply be discarded. Using an affine type system
would allow continuations to be discarded, but while this would be an
improvement, it would still be unsatisfactory since a different toplevel
continuation would be required for each coroutine. We would like to
have a single toplevel continuation which either coroutine would invoke
when finished. In this setting, both continuations representing the con-
trol state the coroutines would depend on the toplevel continuation.

7 Since programs do not terminate, there is no need for a toplevel continuation.

LinUC.tex; 8/11/2002; 11:24; p.27

28 Berdine, O’Hearn, Reddy, Thielecke

Hence a linear (or affine) type system will force these continuations
into a single &-pair. But then the interpretation of commands fails to
type-check since we need to apply one continuation from the pair to
the other, which neither a linear nor an affine system will allow.

Returning to the discussion of reified versus unreified and upward
versus downward continuations, in this section we have presented an
interpretation in which continuations are upward but unreified, and
passed linearly. So continuations may be passed linearly not only when
downward, but also when upward and unreified.

9. Conclusions and Related Work

There are (at least) two main reasons why restricted type systems for
cps are of interest. The first is pragmatic, and current. In a compiler
or other program analysis or verification system, cps can be very
useful since it provides a uniform mechanism for all control flow and
some language features such as higher-order procedures become much
more manageable. This simplification comes at a price in precision,
however, since the standard, unrestricted, cps is usually (much) more
expressive than the fragment needed to interpret the source language
in question. Often this loss of precision is unacceptable. Restricting to
linear continuation-passing reduces the expressiveness of the cps target
language, and hence, loss of precision.

The second reason is conceptual. If control constructs use contin-
uations in a stylised way, then we may hope to better understand
these constructs by studying the typing properties of their semantics.
An example of this is contained in the observation that first-class
continuations break linear typing, while exceptions do not.

Also, although work on constraining the power of continuations has
been done, for example Friedman and Haynes’ [12], the constraints
generally take the form of assertions checked at runtime which ensure
a program’s dynamic behaviour obeys certain invariants. This paper,
on the other hand, presents a static type system, and many of the
usual advantages (static check-ability, unnecessity of runtime checks,
etc.) and disadvantages (loss of expressiveness, etc.) of static typing
apply. Also, since “used linearly” and “invoked exactly once” are not
the same, as discussed in Section 3, the results from prior work do not
immediately carry over.

We have presented interpretations of a variety of control constructs
which pass continuations linearly. While each interpretation is slightly
different, only two basic techniques are used. In all the cases where con-
tinuations are downward (that is, all but coroutines), using the additive

LinUC.tex; 8/11/2002; 11:24; p.28

Linear Continuation-Passing 29

product type to construct &-tuples of continuations is sufficient. This
technique seems to be a general solution when continuations are down-
ward, given the variety of constructs interpretable by it. The situation
is not as clear when continuations are upward, however. Generalisation
of the treatment of coroutines appears to require the addition of some
typing mechanism which allows duplication of a continuation, given a
promise to discard one of the copies before invoking the other, while al-
lowing flexible use of the two copies in the meantime. Additive products
do not suffice due to the last constraint.

We have demonstrated that in a wide variety of cases the cps trans-
form adheres to a linear typing discipline, reducing the expressiveness
of the cps language and hence reducing the loss of precision. We have
obtained some preliminary completeness results (which imply that re-
stricting to linear continuation-passing eliminates all loss of precision),
but currently our analysis there is not exhaustive. For example, we have
identified sublanguages for the procedure call and exception cases, to-
gether with syntactic completeness results, to the effect that each term
in the target is βη-equal to terms that come from the transform. But,
presently, we use different “carved out” sublanguages (similar to that
used by Sabry and Felleisen [29]) for each source language, obtained by
restricting the types in the target; these languages obviously embed into
the larger one here, but there is a question as to whether these embed-
dings preserve completeness, and whether the transforms themselves
preserve contextual equivalence relations (reflection, or soundness, is
not problematic). Additionally, in very recent work, Zdancewic and
Myers [39] use a very similar type system to prove secure information
flow in a higher-order, imperative language. The constrained use of
continuations is crucial to their proof, providing support for the utility
and applicability of linear typing of cps.

Besides the syntactic completeness questions above, there are a num-
ber of challenges for denotational models. For example, given a model
of (cbv) λ-calculus, one might conjecture that there is a linear cps
model that is equivalent to it; here, by “equivalent” we would ask for
isomorphism, or a full and faithful embedding, and not just an adequacy
correspondence. For lower-order source languages we have been able to
obtain completeness results based on the coherence space model, but
this analysis does not extend to higher order. A good place to try to
proceed further might be game models, which have been used by Laird
to give very exact models of control [17], and where the linear passing of
continuations is to some extent visible. Of course, one can ask similar
questions for classes of models described categorically, as well as for
specific, concrete models.

LinUC.tex; 8/11/2002; 11:24; p.29

30 Berdine, O’Hearn, Reddy, Thielecke

[Since the work here was completed, Hasegawa and Laird have
obtained very strong completeness results, which provide further jus-
tification for the typings in this paper. Hasegawa [14] has shown
full completeness for the linear cps transformation of simply-typed
λ-calculus with a somewhat syntactic proof using long βη-normal forms.
Laird [16] has game semantically proven full abstraction of the affine
cps transformation. He considers the transformation from untyped
λ-calculus into a full (without restricted types) calculus, and uses
observational equivalence rather than βη-equality.]

For the case of pure simply-typed λ-calculus, the soundness of linear
cps—the fact that the target adheres to a linear typing discipline—is
well known amongst continuation experts. Surprisingly, we have not
been able to find the transform stated in the literature. But, as we have
emphasised, it is much more than call/return that obeys linearity. There
have certainly been hints of this in the literature, for instance the claim
that coroutines can be implemented using one-shot continuations [5].
Our focus on linearity grew out of a study of expressiveness, where the
distinguishing power of control constructs was found to be intimately
related to the number of times a continuation could be used [36, 37].

It is important to note that our approach is very different from
Filinski’s linear continuations [8]. In our transforms it is continuation
transformers, rather than continuations themselves, that are linear
functions. Also, since Filinski used a linear target language, he certainly
could have accounted for linearly passed continuations as we have;
but his cbv transform has an additional !, which essentially turns the
principal (we use into →.

In a different line [23, 24], Polakow, Pfenning and Yi have also
investigated substructural properties of the range of cps, and obtained
excellent results. Their approach is quite different from that here in
both aims and techniques; generally speaking, one might say that we
take a somewhat semantic tack (focusing on use), where their approach
is more exact and implementation-oriented. Compared to the approach
here, an important point is their use of ordered contexts to capture
the property that, in their treatment, the arguments of auxiliary con-
tinuations introduced by the cps transform (such as m and n in (2))
are used in a stack-like fashion, and that all these arguments are used
before the current continuation. The system presented here, however,
cannot capture these properties since it makes no distinction between
arguments of the auxiliary continuations and arguments of the contin-
uations corresponding to source procedures (such as x in (1)) and since
there is no inherent notion of order in the system.

We have been virtually silent on the issue of state. Adding state
essentially allows information to be transmitted unobserved by the

LinUC.tex; 8/11/2002; 11:24; p.30

Linear Continuation-Passing 31

type system. So allowing storage of anything not controlled by the
type system is straightforward. In our case, since the type system
is only concerned with control behaviour, adding first-order store is
harmless. Also, in the cases where continuations are not reified, allowing
higher-order store does not result in stored continuations, and so is also
harmless. Thielecke has done some related work on state [37]. Allowing
stored continuations, however, is an entirely different story and general
mechanisms look to be effectively precluded by linear typing.

Acknowledgements

Thanks to the anonymous referees for identifying necessary improve-
ments of the discussion.

References

1. Abadi, M. and M. P. Fiore: 1996, ‘Syntactic Considerations on Recursive
Types’. In: 11th Annual IEEE Symposium on Logic in Computer Science,
LICS’96. Proceedings. pp. 242–252.

2. Abramsky, S. and G. McCusker: 1997, ‘Call-by-Value Games’. In: M. Nielsen
and W. Thomas (eds.): Computer Science Logic: 11th International Work-
shop, CSL’97, Annual Conference of the EACSL. Selected Papers., Vol. 1414
of Lecture Notes in Computer Science. pp. 1–17.

3. Barber, A. and G. Plotkin: 1997, ‘Dual Intuitionistic Linear Logic’. Also
University of Edinburgh Laboratory for Foundations of Computer Science
Technical Report ECS-LFCS-96-347.

4. Berdine, J., P. W. O’Hearn, U. S. Reddy, and H. Thielecke: 2000, ‘Linearly
Used Continuations’. in [28], pp. 47–54.

5. Bruggeman, C., O. Waddell, and R. K. Dybvig: 1996, ‘Representing Control
in the Presence of One-Shot Continuations’. In: Proceedings of the ACM SIG-
PLAN ’96 Conference on Programming Language Design and Implementation.
pp. 99–107.

6. Danvy, O.: 2000, ‘Formalizing Implementation Strategies for First-Class Con-
tinuations’. in [31], pp. 88–103.

7. Danvy, O., B. Dzafic, and F. Pfenning: 2000, ‘On Proving Syntactic Properties
of CPS Programs’. In: A. Gordon and A. Pitts (eds.): Proceedings of HOOTS99,
the Third International Workshop on Higher Order Operational Techniques in
Semantics, Vol. 26 of Electronic Notes in Theoretical Computer Science. pp.
19–31.

8. Filinski, A.: 1992, ‘Linear Continuations’. In: Proceedings of the Nineteenth
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. pp. 27–38.

9. Fischer, M. J.: 1972, ‘Lambda Calculus Schemata’. In: Proceedings of an ACM
Conference on Proving Assertions about Programs. New York, pp. 104–109.
SIGPLAN Notices, Vol. 7, No. 1 and SIGACT News, No. 14.

LinUC.tex; 8/11/2002; 11:24; p.31

32 Berdine, O’Hearn, Reddy, Thielecke

10. Fischer, M. J.: 1993, ‘Lambda-Calculus Schemata’. LISP and Symbolic
Computation 6(3/4), 259–288.

11. Flanagan, C., A. Sabry, B. F. Duba, and M. Felleisen: 1993, ‘The Essence
of Compiling with Continuations’. In: Proceedings of the Conference on
Programming Language Design and Implementation. pp. 237–247.

12. Friedman, D. P. and C. T. Haynes: 1985, ‘Constraining Control’. In: Conference
Record of the Twelfth Annual ACM Symposium on Principles of Programming
Languages. pp. 245–254.

13. Friedman, D. P., M. Wand, and C. T. Haynes: 1992, Essentials of Programming
Languages. The MIT Press, McGraw-Hill Book Company, first edition.

14. Hasegawa, M.: 2002, ‘Linearly Used Effects: Monadic and CPS Transformations
into the Linear Lambda Calculus’. In: Proceedings of the 6th International
Symposium on Functional and Logic Programming (FLOPS2002). Aizu, Japan.

15. Haynes, C. T.: 1987, ‘Logic Continuations’. Journal of Logic Programming
4(2), 157–176.

16. Laird, J.: 2002, ‘A Game Semantics of Linearly Used Continuations’. Personal
communication.

17. Laird, J. D.: 1998, ‘A Semantic analysis of control’. Ph.D. thesis, University
of Edinburgh.

18. Moreau, L. and C. Queinnec: 1994, ‘Partial Continuations as the Difference of
Continuations, A Duumvirate of Control Operators’. In: M. Hermenegildo
and J. Penjam (eds.): International Conference on Programming Language
Implementation and Logic Programming (PLILP’94). Proceedings, Vol. 0844
of Lecture Notes in Computer Science. pp. 182–197.

19. Morris, L.: 1970, ‘The Next 700 Programming Language Descriptions’. Later
published as [20].

20. Morris, L.: 1993, ‘The Next 700 Programming Language Descriptions’. LISP
and Symbolic Computation 6(3/4), 249–258. Publication of previously circu-
lated [19].

21. O’Hearn, P. W. and J. C. Reynolds: 2000, ‘From Algol to Polymorphic Linear
Lambda-calculus’. Journal of the ACM 47(1), 167–223.

22. Plotkin, G. D.: 1975, ‘Call-by-Name, Call-by-Value and the λ-calculus’.
Theoretical Computer Science 1(2), 125–159.

23. Polakow, J. and F. Pfenning: 2000, ‘Properties of Terms in Continuation-
Passing Style in an Ordered Logical Framework’. In: J. Despeyroux (ed.):
Workshop on Logical Frameworks and Meta-Languages (LFM 2000).
http://www-sop.inria.fr/certilab/LFM00/Proceedings/.

24. Polakow, J. and K. Yi: 2001, ‘Proving Syntactic Properties of Exceptions in an
Ordered Logical Framework’. In: H. Kuchen and K. Ueda (eds.): Functional
and Logic Programming: 5th International Symposium, FLOPS 2001, Vol. 2024
of Lecture Notes in Computer Science. pp. 61–77.

25. Reynolds, J. C.: 1970, ‘GEDANKEN – A Simple Typeless Language Based on
the Principle of Completeness and the Reference Concept’. Communications
of the ACM 13(5), 308–319.

26. Reynolds, J. C.: 1972, ‘Definitional Interpreters for Higher-Order Programming
Languages’. In: Proceedings of the ACM Annual Conference, Vol. 2. New York,
pp. 717–740. Reprinted as [27].

27. Reynolds, J. C.: 1998, ‘Definitional Interpreters for Higher-Order Programming
Languages’. Higher-Order and Symbolic Computation 11(4), 363–397. Reprint
of [26].

LinUC.tex; 8/11/2002; 11:24; p.32

Linear Continuation-Passing 33

28. Sabry, A. (ed.): 2000. Technical Report No. 545, Computer Science Depart-
ment, Indiana University.

29. Sabry, A. and M. Felleisen: 1993, ‘Reasoning about Programs in Continuation-
Passing Style’. LISP and Symbolic Computation 6(3/4), 289–360.

30. Scott, D. S.: 1970, ‘Outline of a Mathematical Theory of Computation’. Tech-
nical Monograph PRG-2, Programming Research Group, Oxford University
Computing Laboratory.

31. Smolka, G. (ed.): 2000, ‘Programming Languages and Systems: 9th European
Symposium on Programming, ESOP 2000. Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2000. Proceedings.’,
Vol. 1782 of Lecture Notes in Computer Science. Springer-Verlag.

32. Steele, Jr., G. L. and R. P. Gabriel: 1996, ‘The Evolution of LISP’. In: T. J.
Bergin and R. G. Gibson (eds.): History of Programming Languages, Vol. 2.
Addison Wesley, pp. 233–308.

33. Strachey, C. and C. P. Wadsworth: 1974, ‘Continuations: A Mathematical
Semantics for Handling Full Jumps’. Technical Monograph PRG-11, Program-
ming Research Group, Oxford University Computing Laboratory. Reprinted
as [34].

34. Strachey, C. and C. P. Wadsworth: 2000, ‘Continuations: A Mathematical Se-
mantics for Handling Full Jumps’. Higher-Order and Symbolic Computation
13(1/2), 135–152. Reprint of [33].

35. Tennent, R. D.: 1973, ‘Mathematical Semantics of SNOBOL4’. In: Conference
Record of the First Annual ACM Symposium on Principles of Programming
Languages. pp. 95–107.

36. Thielecke, H.: 1999, ‘Using a Continuation Twice and its Implications for the
Expressive Power of call/cc’. Higher-Order and Symbolic Computation 12(1),
47–74.

37. Thielecke, H.: 2000, ‘On Exceptions versus Continuations in the Presence of
State’. in [31], pp. 397–411.

38. Thielecke, H.: 2002, ‘Comparing Control Constructs by Double-barrelled CPS’.
Higher-Order and Symbolic Computation 15(2/3), 141–160.

39. Zdancewic, S. and A. C. Myers: 2002, ‘Secure Information Flow and Linear
Continuations’. Higher-Order and Symbolic Computation 15(2/3), 209–234.

LinUC.tex; 8/11/2002; 11:24; p.33

