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Abstract

Increasing degrees of reasoning about programs are being mechanized,
and hence more formality is needed. Here we present an instance of this
formalization in the form of a precise characterization of the range of
the cps transformation using an affine type system. The point is that
the range of cps is defined with a type system, that is, in a way quite
accessible to tools.

1 Introduction

Increasing degrees of reasoning about programs are being mechanized. For
instance, witness the trend: C, ML, Proof Carrying Code, and beyond. In
order to support this, the properties to be reasoned about must be expressed in a
language which tools can handle, instead of the informal and highly undecidable
language of mathematical discourse. For type preserving or certifying compilers;
or other automated (not necessarily automatic) checkers, analyzers, or verifiers;
knowing a property holds, even with a proof, isn’t enough: the property must be
captured by the tool’s formalism. If an inexpressible property is taken advantage
of, then at some point the tool will require reasoning outside its formal system,
causing problems. Hence more formality is needed.

Here we present an instance of this formalization of useful properties in the
form of a precise characterization of the range of the cps transformation using
an affine type system. Here, by precise we mean that all terms in the target
language come from some term in the source language. This provides a sort of
completeness or fullness result (no junk), which while not the most theoretically
desirable due to the heavy restriction on types and its syntactic nature, ought
to be good enough to reduce loss of precision in compiler analyses. But the
point is that the junk-free target language is defined with a type system, that
is, in a way quite accessible to tools.

As an example of a property this formalization may allow to be exploited,
in a certifying compiler which wishes to stack-allocate activation records, the
type systems of the intermediate languages must be tight enough to exclude all
programs which violate this discipline. Unlike in a standard compiler, it is not
sufficient to simply “know” that none of the intermediate language programs
which actually come from earlier stages of the compiler will exhibit such behav-
ior: in a certifying compiler the stage which makes this assumption will generate
code which fails to typecheck, and hence no proof of the generated code can be
produced.
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2 Affine CPS Interpretation

The source language we consider is the usual call-by-value, left-to-right,
λ-calculus. One standard cps interpretation is Fischer’s continuation-first one
[5] in which source procedures are interpreted with the type:

µD. (D → R) → (D → R)

As investigated by Berdine et.al. [2], this interpretation can be refined to capture
the stylized use of continuations inherent in the procedure call/return mecha-
nism:

D
def= µD. (D → R) ( (D → R)

As usual, toplevel programs are interpreted by answers parameterized by a
toplevel continuation:

(D → R) ( R

Functions of affine arrow (() type cannot duplicate their argument. Hence,
continuation arguments of affine functions cannot be invoked multiple times.
This serves to capture the control-flow property

Once a procedure returns, it will not return again until it is called again.

by making the cps versions of such procedures inexpressible.
Now, before we have defined the translation of terms, we know enough about

the cps transformation to characterize its range.

3 Range of CPS

First we briefly present an affine variant of the target language of the cps
transformation used in [2]. Types are given by the grammar:

P ::= R | A → P | P ( P | X | µX.P pointed types
A ::= N | P types

and the typing judgment is given by the axioms and rules:

Γ , x : A ; ∆ ` x : A Γ ; ∆ , x : P ` x : P

Γ ; ∆ ` M : B
B = A

Γ ; ∆ ` M : A

Γ , x : A ; ∆ ` M : P

Γ ; ∆ ` λx.M : A → P

Γ ; ∆ ` M : A → P Γ ; − ` N : A

Γ ; ∆ ` M N : P

Γ ; ∆ , x : P ` M : Q

Γ ; ∆ ` δx.M : P ( Q

Γ ; ∆ ` M : P ( Q Γ ; ∆′ ` N : P

Γ ; ∆ , ∆′ ` M N : Q

This language is sufficiently general to transform many source languages
into, but our purpose here is to characterize the range, not the codomain, of
the cps transformation. So we specialize this system by restricting the form of
types to only those exercised by the cps interpretation. That is, we restrict the
grammar of types to:

A,P ::= D → R | D | (D → R) ( D → R | (D → R) ( R | R types

2



Note that there is only a single type identifier, and only a single unfolding of
the recursive continuation transformer type is needed, or allowed.

The typing rules specialized to the restricted form of types are (where ¬D
abbreviates D → R):

Γ ; ∆ , k : ¬D s̀ M : R

Γ ; ∆ s̀ δk. M : ¬D ( R Γ ; ∆ , k : ¬D s̀ k : ¬D

Γ , x : D ; ∆ s̀ M : R

Γ ; ∆ s̀ λx.M : ¬D

Γ ; ∆ s̀ M : ¬D ( ¬D Γ ; ∆′
s̀ N : ¬D

Γ ; ∆ , ∆′
s̀ M N : ¬D

Γ , x : D ; ∆ s̀ x : D

Γ ; ∆ , k : ¬D s̀ M : ¬D

Γ ; ∆ s̀ δk. M : ¬D ( ¬D

Γ ; ∆ s̀ M : ¬D ( ¬D
==================

Γ ; ∆ s̀ M : D

Γ ; ∆ s̀ M : ¬D Γ ; − s̀ N : D

Γ ; ∆ s̀ M N : R

Γ ; ∆ s̀ M : ¬D ( R Γ ; ∆′
s̀ N : ¬D

Γ ; ∆ , ∆′
s̀ M N : R

Note that Γ ; ∆ s̀ M : A if and only if Γ ; ∆ ` M : A and all types which appear
in the derivation of the latter judgment are in the restricted type language.

Observe that if Γ ; ∆ s̀ M : A, then ∆ = − or ∆ = k : ¬D. This indicates
that with the restricted form of types, affine, linear, and ordered linear typing
all coincide.1 We use an affine system since, for the full calculus, it yields the
strongest no junk result. Taking this special form of contexts into account, we
can further specialize the presentation of the typing rules:

Γ ; k : ¬D s̀ M : R

Γ ; − s̀ δk. M : ¬D ( R Γ ; k : ¬D s̀ k : ¬D

Γ , x : D ; k : ¬D s̀ M : R

Γ ; k : ¬D s̀ λx.M : ¬D

Γ ; − s̀ M : ¬D ( ¬D Γ ; k : ¬D s̀ N : ¬D

Γ ; k : ¬D s̀ M N : ¬D

Γ , x : D ; − s̀ x : D

Γ ; k : ¬D s̀ M : ¬D

Γ ; − s̀ δk. M : ¬D ( ¬D

Γ ; − s̀ M : ¬D ( ¬D
==================

Γ ; − s̀ M : D

Γ ; k : ¬D s̀ M : ¬D Γ ; − s̀ N : D

Γ ; k : ¬D s̀ M N : R

Γ ; − s̀ M : ¬D ( R Γ ; k : ¬D s̀ N : ¬D

Γ ; k : ¬D s̀ M N : R

From this type system we can now extract a grammar where we have one
syntactic category for terms of each type:

K ::= k | λx. P | W K ¬D

W ::= x | δk. K D = ¬D ( ¬D

T ::= δk. P ¬D ( R

P ::= K W | T K R

If we draw k from a singleton set of identifiers which is disjoint from the set of
identifiers from which x is drawn, then the type system and syntax are equiv-
alent. That is, a term will be an element of a syntactic category if and only if
there is a judgment proving the term has the associated type.

1Note, however, that while we only consider continuation usage, Polakow and Pfenning [9]
also distinguish continuation arguments from function arguments, and refine the treatment
of the former using an ordered system. An unordered system such as ours will not suffice for
such analyses.
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Sabry and Felleisen’s analysis of the range of cps [10] led them to nearly the
same syntax. The only difference is that their transformation does not introduce
“administrative” redexes [8], and so syntactic category T is not needed, but
toplevel programs must be treated specially. This is interesting since Sabry
and Felleisen analyzed the syntax of the output of the cps transformation,
while we have analyzed the types of the output of the cps transformation,
obtaining the same result (modulo “administrative” redexes). So this work
can be seen as a logical reconstruction of Sabry and Felleisen’s: their methods
are syntactic, or even lexical (one continuation identifier is enough), while our
starting point is a domain equation with, crucially, an affine function space
constraining continuation usage.

4 No Junk

We now establish the precision of our characterization of the range of cps by
stating that all terms in the target language come from some term in the source
language. Before stating the result though, we need to present the affine cps
transformation of terms:

x
def= δk. k x λx.M

def= δk. k δh. λx. M h M N
def= δk. M λm. N λn.m k n

Proposition 1 (No Junk) If Γ ; − s̀ M : (D → R) ( R, then there exists a
source term N such that M

βη= N .

The proof proceeds by constructing an appropriate source term N using a
direct style transformation, much like Sabry and Felleisen’s:

KLkM def= λx. x WLxM def= x

KLλx.MM def= λx.PLMM WLδk. MM def= KLMM
KLM NM def= λx.KLNM (WLMM x) PLM NM def= KLMMWLNM
T Lδk. MM def= PLMM PLM NM def= KLNM T LMM

Crucially, the ds transformation is inverse to the cps transformation:

Lemma 2 1. If Γ ; k : ¬D s̀ M : ¬D, then KLMM N
βη= N δk. M .

2. If Γ ; − s̀ M : D or Γ ; − s̀ M : ¬D ( ¬D , then WLMM N
βη= N M .

3. If Γ ; − s̀ M : ¬D ( R, then T LMM βη= M .

4. If Γ ; k : ¬D s̀ M : R, then PLMM βη= δk. M .

Laird [7] has generalized this result and semantically proven full abstraction
of the affine cps transformation. He considers the transformation from untyped
λ-calculus into a full (without restricted types) calculus, and uses observational
equivalence rather than βη-equality.

5 Exceptions

[Space permitting, we will briefly present an analogous analysis of the range of
the cps transformation of a language with basic exception-handling primitives.]
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6 Future Directions

In order to make use of a type system such as that studied here in the context
of certifying compilers, we also need a lower-level language and type system into
which transformations that exploit properties ensured by the higher-level type
system can be defined such that typing derivations can also be translated. So
while Danvy [4] and Polakow and Pfenning [9] have proofs that continuations can
be stack-allocated, we would like to design a type-system for stack-manipulating
code and show how terms and types are translated.

It would also be interesting to test the hypothesis that using a junk-free cps
language improves the precision of static analyses, for example by appropriately
modifying Shivers’ control-flow analysis [12], and relating the findings to Sabry
and Felleisen’s [11]. Also interesting would be to extend the source language
such that some continuations are used affinely and some not, and then show
that, for example Bruggeman Waddell and Dybvig’s efficient representation [3]
is safe for the affinely used continuations, without relying on run-time checks.

Sabry and Felleisen use a very similar cps language to discover a complete
equational theory for call-by-value λ-calculus [10]. It may be interesting to
perform a similar analysis for exceptions, and compare with related work such
as Benton and Kennedy’s [1].
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