
Extended version of paper in: FSTTCS 2004, LNCS 3328, pp. 97–109. 1

A Decidable Fragment of Separation Logic

Josh Berdine1, Cristiano Calcagno2, and Peter W. O’Hearn1

1 Queen Mary, University of London {berdine,ohearn}@dcs.qmul.ac.uk
2 Imperial College, London ccris@doc.ic.ac.uk

Abstract. We present a fragment of separation logic oriented to linked
lists, and study decision procedures for validity of entailments. The re-
strictions in the fragment are motivated by the stylized form of reasoning
done in example program proofs. The fragment includes a predicate for
describing linked list segments (a kind of reachability or transitive clo-
sure). Decidability is first proved by semantic means: by showing a small
model property that bounds the size of potential countermodels that
must be checked. We then provide a complete proof system for the frag-
ment, the termination of which furnishes a second decision procedure.

1 Introduction

Separation logic is a new approach to reasoning about programs that manipulate
pointer structures [1]. The main advantage of the logic is the way it supports rea-
soning about different portions of heap which can be combined in a modular way
using the separating conjunction operation. In this paper we present a fragment
of separation logic and study decision procedures for validity of entailments.

These results are part of a bigger project that aims to provide algorithms
and tools to transfer the simplicity of handwritten proofs with separation logic to
an automatic setting. To make the task of automatic verification more feasible,
we restrict our attention to structural integrity properties (like not following
dangling pointers, preserving noncircularity of linked lists, not leaking memory),
rather than full correctness. Moreover, we restrict the language by disallowing
pointer arithmetic.

Even with these restrictions, the decidability questions are nontrivial. In
particular, one of the most treacherous passes in pointer verification and analysis
is reachability. To describe common loop invariants, and even some pre- and post-
conditions, one needs to be able to assert that there is a path in the heap from
one value to another; a fragment that cannot account for reachability in some
way will be of very limited use. When we inquire about decidability we are then
square up against the bugbear of transitive closure (reachability is the transitive
closure of points-to); there are various decidable fragments of, say, the first-order
logic of graphs, but for many of these decidability breaks if transitive closure is
added.

So, a main technical challenge is to take on a form of reachability, in a
way that fits with the separating conjunction (and the possibility of dangling
pointers). We begin simply, with linked list structures only, instead of general

heap structures with arbitrary sharing. Our analysis can be adapted to certain
kinds of tree structure, but we do not yet have a general picture of the kinds of
inductive definitions that are amenable to the style of analysis presented here.

Our approach started by observing the stylized reasoning that was done in
typical manual proofs using separation logic (e.g., [2–4]). For instance, we would
often say “I have a list here, and another there occupying separate storage”, but
never would we assert the negation of such a statement. Generally, in many ex-
amples that have been given, the assertions include a heap-independent, or pure,
boolean condition, and a number of heap-dependent (or “spatial”) assertions sep-
arately conjoined. So, we consider a restricted fragment where the formulæ are
of the form Π | Σ, where Π is a conjunction of equalities and inequalities and
Σ is a separating conjunction of points-to facts and list segment remarks. We
show the decidability of entailment between formulæ of this form.

In fact, two decision procedures are given. The first, a semantic procedure, is
based on a “small model property”. In essence, we have designed the fragment
so that formulæ do not admit any “unspecified” sharing, and then exploited
separation logic’s local reasoning to capitalize on the absence of interference
by avoiding case analysis on the possible interaction patterns between formulæ.
The essential result, which fails for separation logic as a whole, is that when
considering the possible models of our list segment predicate, no case analysis
on the possible interference patterns is necessary, instead considering either the
length zero or length two model immediately suffices. So decidability is achieved
not through some brute force interference analysis, but by leveraging locality.

The second is a proof-theoretic procedure. It has the advantage of not gen-
erating the exponentially-many potential countermodels in every case, as the
semantic procedure does. Also, this is the first complete proof theory that has
been given for (a fragment of) separation logic. It is a candidate for extension
to richer fragments (where we might not insist on decidability).

It is worth remarking on what is left out of the fragment. Although we are
asking about the validity of entailments, entailment is not itself internalized with
an implication connective; the additive and multiplicative implications (→ and
−−∗) from BI are omitted. A hint of the computational significance of these omis-
sions can be seen in the (easier) problem of model checking assertions (checking
satisfaction). In earlier work it was shown that a fragment with points-to and
nesting of −−∗ and→, but no list segment predicate, has model checking complex-
ity PSpace-Complete [5]. Even just wrapping negations around the separating
conjunction leads to PSpace-Complete model checking. In contrast, the model
checking problem for the fragment of this paper, which goes further in that it
considers list segments, is linear.

The fragment of this paper has been used in a prototype tool that checks
properties of pointer programs. Typically in tools of this kind, the assertion lan-
guage is closed under taking weakest preconditions of atomic commands. This
is not the case for our fragment. However, it is possible to reduce entailments
arising from weakest preconditions to entailments in our fragment, by way of a
form of symbolic execution. Here we confine ourselves to the question of decid-

2

ability for the fragment, and leave a description of the symbolic execution phase
to a future paper.

2 Fragment of Separation Logic

The fragment of separation logic we are concerned with is specified by restricting
the assertion language to that generated by the following grammar:

x, y, . . . ∈ Variables variables

E F nil | x Expressions

P F E=E | ¬P simple Pure formulæ
Π F true | Π ∧ P Pure formulæ

S F E 7→E | ls(E,E) simple Spatial formulæ
Σ F emp | S ∗Σ Spatial formulæ

AF P | Π | S | Σ | Π | Σ formulæ

Note that we abbreviate ¬(E1=E2) as E1 6=E2, and use ≡ to denote “syntactic”
equality of formulæ, which are considered up to symmetry of = and permutations
across ∧ and ∗, e.g, Π ∧P ∧P ′ ≡ Π ∧P ′ ∧P . We use notation treating formulæ
as sets of simple formulæ, e.g., writing P ∈ Π for Π ≡ P ∧Π ′ for some Π ′.

Formulæ are interpreted as predicates on program States with a forcing re-
lation, while expressions denote Values and depend only on the stack:3

s , h � A JEK ∈ Stacks→ Values

Stacks def= Variables→ Values
Heaps def= L-values fin

⇀ R-values
States def= Stacks×Heaps

R-values def= Values
L-values

def
⊂ Values

nil
def
∈ ValuesrL-values

The semantics of the assertion language is shown in Table 1, where fv(E)
simply denotes the variables occurring in E. Below we try to give some intuitive
feel for the assertions and what sorts of properties are expressible with a few
examples.

As always, a formula S ∗Σ is true in states where the heap can be split into
two separate parts (with disjoint domains) such that S is true in one part and
Σ is true in the other. The unit of this conjunction is emp, which is true only
in the empty heap. The only primitive spatial predicate is 7→, which describes
individual L-values in the heap. So 10 7→42 is true in the heap in which L-value 10
contains 42, and nothing else—the domain is the singleton {10}. Similarly, x7→42
asserts that whichever L-value the stack maps x to contains 42. In addition to
the spatial (heap-dependent) part, formulæ also have a pure (heap-independent)
part. So extending the last example, with x=y | x7→42 we also assert that the

3 For a concrete instance of this model, take Values = Z, L-values = Nr{0}, nil = 0.

3

Table 1. Semantics of Assertion Language

JxKs def
= s(x) JnilKs def

= nil

s , h � E1=E2

def

iff JE1Ks = JE2Ks

s , h � ¬P
def

iff s , h 2 P

s , h � true always

s , h � Π ∧ P
def

iff s , h � Π and s , h � P

s , h � E1 7→E2

def

iff h = [∅ | JE1Ks�JE2Ks]

s , h � ls(E1, E2)
def

iff there exists n. s , h � lsn(E1, E2)

s , h � ls0(E1, E2)
def

iff JE1Ks = JE2Ks and h = ∅
s , h � lsn+1(E1, E2)

def

iff JE1Ks 6= JE2Ks and

there exists v ∈ Values. [s |x�v] , h � E1 7→x ∗ lsn(x, E2)

for x /∈ fv(E1, E2)

s , h � emp
def

iff h = ∅
s , h � S ∗Σ

def

iff there exists h1 ⊥ h2. h = h1∗h2 and s , h1 � S and s , h2 � Σ

s , h � Π | Σ
def

iff s , h � Π and s , h � Σ

stack maps x and y to equal R-values. Since the conjuncts of a ∗ formula must
be true in disjoint heaps, x=y | x7→nil ∗ y 7→nil is unsatisfiable.

The ls predicate describes segments of linked list structures in the heap:
ls(x, y) describes a list segment starting at the L-value denoted by x whose last
link contains the value of y, which is a dangling pointer. That y is dangling is
significant, as it precludes cycles. So ls(x, x) describes the empty list segment,
and is equivalent to emp. Were the endpoint not required to be dangling, then
ls(x, x) could describe cyclic lists containing x. Instead, a cyclic list is described
for instance with x7→y ∗ ls(y, x). For some further examples, ls(x, nil) describes
“complete” lists, rather than segments. A list with an intermediate link can be
expressed with ls(x, y)∗ls(y, nil), two non-overlapping lists with ls(x, nil)∗ls(y, nil),
and two lists with a shared tail with ls(x, z) ∗ ls(y, z) ∗ ls(z, nil).

Our restriction to unary heap cells, and hence lists with links containing
nothing but a pointer to the next link, is not significant and need not cause alarm:
our development extends straightforwardly, all the formulæ just get longer.4

3 Decidability, Model-Theoretically

As mentioned earlier, our primary concern in this paper is deciding validity of
entailments between formulæ in the fragment. That is, for entailments of the

4 While with binary heap cells, unrolling a ls involves generating a fresh variable, this
is unproblematic for decidability in part due to Definition 10.

4

form Π | Σ ` Π ′ | Σ′, we wish to check if for all s, h. s , h � Π | Σ implies s , h �
Π ′ | Σ′. Before getting stuck into decidability, we try to develop some intuition
with a few examples.

First trivially, anything entails itself, up to equalities: x=y ∧ E=F | x7→E `
y 7→F . As nil /∈ L-values, x7→E ` x6=nil | x7→E. Also, since ∗ guarantees sep-
aration, spatial formulæ have implicit non-alias consequences: x7→E ∗ y 7→F `
x6=y | x7→E ∗ y 7→F . Explicit descriptions of list segments entail the inductive
descriptions: x=y | emp ` ls(x, y) for length 0, x6=y | x7→y ` ls(x, y) for length 1,
x6=y∧ z 6=y | x7→z ∗ z 7→y ` ls(x, y) for length 2, and x6=y | x7→z ∗ ls(z, y) ` ls(x, y)
for length “n + 1”. All the inequalities in these examples are actually necessary:
Since the ls predicate prohibits cycles in the consequent, there must be enough
inequalities in the antecedent to guarantee acyclicity. Crucially, there are valid
entailments which generally require induction to prove, such as appending a list
segment and a list: ls(x, z) ∗ ls(z, nil) ` ls(x, nil).

Before attacking entailment validity, we must consider formula satisfaction:

Lemma 1 (Satisfaction Decidable). For given s , h,Π | Σ, checking the
satisfaction s , h � Π | Σ is decidable.

In fact, satisfaction checking is linear in the combined size of the model and
the formula. For a given stack and heap, first we check the pure part of the
formula against the stack in the obvious way. Then, to check the spatial part
we start from the left and proceed as follows. If the first formula is a points-to,
we remove the evident singleton from the heap (if present) and continue; if the
sigleton is not present we report “no”. If the formula is a ls we simply try to
traverse through the heap from the putative start until we get to the putative
end (deleting cells as we go). If the traversal fails we report “no”, otherwise we
continue on with the rest of the spatial part. When we get to the empty spatial
formula we just check to see if we have the empty heap.

Informally, checking validity of entailments of the form Π | Σ ` Π ′ | Σ′ is
decidable because it suffices to consider finitely-many potential models of the
antecedent. This small model property is captured primarily by:

Proposition 2. The following rule is sound:

UnrollCollapse
Π ∧ E1=E2 | Σ ` Π ′ | Σ′

Π ∧ E1 6=E2 ∧ x6=E2 | E1 7→x ∗ x7→E2 ∗Σ ` Π ′ | Σ′

Π | ls(E1, E2) ∗Σ ` Π ′ | Σ′ x /∈ fv(Π,E1, E2, Σ,Π ′, Σ′)

This rule says that to prove that a ls entails a formula, it suffices to check if the lss
of lengths zero and two5 entail the formula. That is, it eliminates ls from the form
of antecedents, and allows the conclusion of an inductive property from finitely-
many non-inductive premisses. From a different perspective, this rule expresses

5 There is no need to consider length one because if the right-hand side accepts a list
of length two then it also accepts a list of length one. The converse does not hold
because of 7→.

5

a form of heap abstraction in that, as far as entailment is concerned, each of all
the possible models of the ls is equivalent to either the empty one or the length
two one. Pushing this further, we see that the case analysis UnrollCollapse

performs when read bottom-up effects a sort of symbolic state space exploration.
Before presenting the proof, we show how this result yields decidability.

Lemma 3. For fixed Π, Σ, Π ′, Σ′ such that no subformula of Σ is of form
ls(E1, E2), checking Π | Σ ` Π ′ | Σ′ is decidable.

Proof (Sketch, see also Section A.2). Because the antecedent’s spatial part is a
list of points-to facts, any potential model must have a heap whose domain is
exactly the size of the antecedent. Furthermore, there is an evident notion of iso-
morphism, where two states are isomorphic just if one is obtained from the other
by L-value renaming. The fragment is closed (semantically) under isomorphism
and, up to isomorphism, there are only finitely-many states of any given size.
So, we check the antecedent on finitely-many canonical representatives of these
equivalence classes, and when the antecedent holds we check the conclusion. ut

Corollary 4 (Validity Decidable). For fixed Π, Σ, Π ′, Σ′, checking Π | Σ `
Π ′ | Σ′ is decidable.

Proof. Applying UnrollCollapse repeatedly yields a set of entailments whose
antecedents do not contain ls, and so can each be decided due to Lemma 3. ut

The semantic decision procedure gotten from the small model property shows
that validity is in coNP; to show invalidity we can guess one of exponentially-
many models of a suitably bounded size, and then satisfaction of both antecedent
and consequent can easily be checked in polynomial time. We are not sure about
hardness. On one side, the absence of negation from the fragment may suggest a
polynomial complexity. However, a subtle form of negation is implicit in formulæ
like y 6=z | ls(x, y) ∗ ls(x, z), which implies that either ls is empty, but not both.
Preliminary attempts to exploit these implicit disjunctions to reduce one of the
standard coNP-complete problems to validity of entailment have failed.

3.1 Soundness of UnrollCollapse

Note that while we are only investigating a fragment, the metatheory uses the
whole of separation logic. Section A.1 summarizes the extensions to the seman-
tics, and see [1]. The full logic is used in particular to state the following prop-
erties of the ls predicate, upon which soundness of UnrollCollapse depends:

– The end of a ls dangles:

ls(−, E2)→ (E2 6↪→−) (1)

– Each L-value reachable in a ls, except the end, does not dangle:

(E1 6=E2 ∧ ls(−, E2) ∧ −↪→E1)→ (E1↪→−) (2)

6

– Models of sublss can be changed provided cycles are not introduced:

ls(E1, E4) ∧ (ls(E2, E3) ∗ true)
↔ (ls(E2, E3) ∧ E4 6↪→−) ∗

(
(ls(E2, E3) ∧ E4 6↪→−) −−∗ ls(E1, E4)

) (3)

These can be understood simply as particular properties of ls, but there are more
elucidating readings. That is, (1) and (2) provide a non-inductive characteriza-
tion of what L-values are, and are not, in heaps modeling a ls. In other words,
they characterize the points-to facts about models of lss.

Property (3), which is proved in Section A.3, states that heaps containing
segments from E1 to E4 (ls(E1, E4)) via a segment from E2 to E3 (∧(ls(E2, E3)∗
true)) can be split into a heap containing the subsegment (ls(E2, E3)) which, due
to acyclicity, must not contain the endpoint (∧E4 6↪→−), and (∗) a heap which
when augmented with any heap containing a segment from E2 to E3 without E4

(ls(E2, E3)∧E4 6↪→−) yields (−−∗) a segment from E1 to E4 (ls(E1, E4)). That is,
while the semantics in Table 1 specifies how models of a ls are related to models
of the inductive occurrence, (3) characterizes how models of a ls are related to
any submodel which is a ls (which, summarizing the above, is simply that the
submodels do not contain the endpoint). In other words, (3) characterizes the ls
facts about models of lss.

The soundness argument for UnrollCollapse is largely concerned with an-
alyzing the impact on validity of entailment which changing from one model of
a ls to another has. For atomic formulæ, (1)–(3) give us a handle on this impact.
For compound formulæ, the local reasoning supported by ∗, and precision of
every predicate is essentially all we need. A predicate is precise [6] just when for
any given stack and heap, there is at most one subheap that satisfies it; and so
every predicate cuts out an unambiguous area of storage.

The general property we need is expressed in the following key lemma:

Lemma 5.
If Π | ls2(E2, E3) ∗Σ ` Π ′ | Σ′ (4)
and s , h � Π ∧ E2 6=E3 ∧ E2 6↪→−∧Σ (5)

then s , h � Π ′ ∧ (ls(E2, E3) −−∗ Σ′)

Proof. See Section A.4. ut

This expresses that the ls predicate is, in some sense, “abstract”; stating, ba-
sically, that if a length two ls validates an entailment, then the entailment’s
consequent is insensitive to the particular model of the ls. In more detail, any
model of the entailment’s antecedent minus the ls (Π | Σ), which is consistent
with adding a nonempty ls (E2 6=E3 ∧ E2 6↪→−), will also model the entailment’s
consequent when augmented with any model of the ls (Π ′ ∧ (ls(E2, E3) −−∗ Σ′)).
It may be useful to note some formulæ that, were they allowed, would cause this
result to fail. First are imprecise predicates. Nearly everything breaks in their
presence, but in particular, for imprecise A,B such that s , h � A∗B, not all sub-
heaps of h which model A need leave or take enough heap for the remainder to

7

model B, and so changing models of A can easily falsify B. Another problematic
addition would be existentials in consequents, which would allow consequents to,
e.g., impose minimum lengths with formulæ such as ∃x, y. E1 7→x∗x7→y∗ls(y, E2),
which changing models of antecedents could violate. Finally, allowing “unspec-
ified” sharing with formulæ such as ls(x, y) ∧ Σ gives two views of the same
heap, one of which may be invalidated when replacing the heap with a different
model of the other. Banning unspecified sharing forces the program annotations
to explicate sharing; a restriction whose impact is presently unclear.

Once we know that consequents are insensitive to particular models of lss,
we can replace any model with one of either length 0 or 2, depending on whether
or not the pure part of the antecedent forces the endpoints to be equal, making
proving soundness of UnrollCollapse straightforward:

Proof (Proposition 2). Suppose the premisses are valid:

Π ∧ E1=E2 | Σ ` Π ′ | Σ′ (6)
Π ∧ E1 6=E2 ∧ x6=E2 | E1 7→x ∗ x7→E2 ∗Σ ` Π ′ | Σ′ (7)

for x /∈ fv(Π, E1, E2, Σ,Π ′, Σ′). Fix s , h and assume the antecedent of the
conclusion: s , h � Π | ls(E1, E2) ∗Σ. Proceed by cases:

[JE1Ks = JE2Ks]: Hence s , h � Π ∧ E1=E2 | Σ, and so by (6), s , h � Π ′ | Σ′.
[JE1Ks 6= JE2Ks]: Hence h = h12∗hΣ and there exists l. s′ , h12 � E1 7→x∗ls(x,E2)

and s′ , hΣ � Π∧E1 6=E2 | Σ where s′ = [s |x�l] for x fresh. Therefore by (7),
Lemma 5 ensures s′ , hΣ � Π ′ | (ls(E1, E2) −−∗ Σ′), and hence s , h � Π ′ | Σ′.

ut

4 Proof Theory

In the previous section we saw how UnrollCollapse yields decidability of the
fragment model-theoretically. We now see that it also forms the basis of a sound
and complete proof theory, and a decision procedure based on proof-search.

The rules of the proof system are shown in Table 2. Since there is no Cut

rule, the rules have a rather odd form. What we have, essentially, is a collection
of axioms for the semantic properties of the assertion language, each of which
has been Cut with an arbitrary formula. A noteworthy point is that the rules
generally have only one premiss, so proof-search is largely simply rewriting.

Proposition 6 (Soundness). Every derivable entailment is valid.

Proof. The result follows from validity of each axiom’s conclusion, and validity
of each rule’s premisses implies validity of its conclusion. The UnrollCollapse

case is Proposition 2, and the others are straightforward calculations. ut

8

Table 2. Proof System

Axiom

Π | emp ` true | emp

Inconsistent

Π ∧ E 6=E | Σ ` Π ′ | Σ′

Substitution
Π[E/x] | Σ[E/x] ` Π ′[E/x] | Σ′[E/x]

Π ∧ x=E | Σ ` Π ′ | Σ′

=ReflexiveL
Π | Σ ` Π ′ | Σ′

Π ∧ E=E | Σ ` Π ′ | Σ′

nilNotLval
Π ∧ E1 6=nil | E1 7→E2 ∗Σ ` Π ′ | Σ′

Π | E1 7→E2 ∗Σ ` Π ′ | Σ′

∗Partial
Π ∧ E1 6=E3 | E1 7→E2 ∗ E3 7→E4 ∗Σ ` Π ′ | Σ′

Π | E1 7→E2 ∗ E3 7→E4 ∗Σ ` Π ′ | Σ′

UnrollCollapse
Π ∧ E1=E2 | Σ ` Π ′ | Σ′

Π ∧ E1 6=E2 ∧ x6=E2 | E1 7→x ∗ x7→E2 ∗Σ ` Π ′ | Σ′

Π | ls(E1, E2) ∗Σ ` Π ′ | Σ′ x /∈ fv(Π, E1, E2, Σ, Π ′, Σ′)

=ReflexiveR
Π | Σ ` Π ′ | Σ′

Π | Σ ` Π ′ ∧ E=E | Σ′

Hypothesis
Π ∧ P | Σ ` Π ′ | Σ′

Π ∧ P | Σ ` Π ′ ∧ P | Σ′

Emptyls
Π | Σ ` Π ′ | Σ′

Π | Σ ` Π ′ | ls(E, E) ∗Σ′

Frame
Π | Σ ` Π ′ | Σ′

Π | S ∗Σ ` Π ′ | S ∗Σ′

NonEmptyls
Π ∧ E1 6=E3 | Σ ` Π ′ | ls(E2, E3) ∗Σ′

Π ∧ E1 6=E3 | E1 7→E2 ∗Σ ` Π ′ | ls(E1, E3) ∗Σ′

4.1 Decidability and Completeness

While we have already shown model-theoretically that entailment between for-
mulæ is decidable, the proof system provides another argument for decidability.
We prove decidability directly by demonstrating a decision procedure.

The proof-search algorithm makes use of a class of formulæ which are “max-
imally explicit”. The primary characteristic of these formulæ, discussed later,
is that the Frame rule is complete for entailments with such formulæ as an-
tecedents.

Definition 7 (Normal Form). A formula Π | Σ is in normal form if

Π | Σ ≡ (xi 6=xj)1≤i 6=j≤n ∧ (xi 6=nil)1≤i≤n ∧ (Ei 6=E′
i)1≤i≤m ∧ true

| x1 7→E′′
1 ∗ · · · ∗ xn 7→E′′

n ∗ emp

for some n, m and where xi 6≡ xj for i 6= j and Ei 6≡ E′
i.

We will be concerned with the following proof-search algorithm:

Algorithm 8. For goal entailment g, ps(g) either fails or returns a proof of g:

ps(g) = nondeterministically select a rule r such that:
g unifies with the conclusion of r, via some substitution s

and if r is nilNotLval, then E1 6=nil /∈ Π (8)

9

and if r is ∗Partial, then E1 6=E3 /∈ Π (9)
and if r is Frame or NonEmptyls,

then the antecedent of g is in normal form
(10)

if no such rule exists, then fail
else if r is an axiom, then return r

else let p0, . . . , pn for some n be the premisses of r after applying s

in return r(ps(p0), . . . , ps(pn))

Here we consider axioms in the proof system to be proof constants, and rules to
be functions from proofs of their premisses to proofs of their conclusions.

A point to note about this algorithm is that as long as the additional sidecondi-
tions (8)–(10) are met, the order in which the rules are applied is inconsequential.
Also note that when a stuck entailment is encountered the algorithm fails, with-
out backtracking as would be standard for a proof-search algorithm. The first
step toward showing that ps is a decision procedure is termination:

Lemma 9 (Termination). For any goal entailment, ps terminates.

Proof. Termination of ps is established by observing that, with additional side-
conditions (8) and (9), applying any rule makes progress: the size of each premiss
of any rule application is lexicographically less than the size of the conclusion,
where size is defined by:

Definition 10 (Size). The size of an entailment Π | Σ ` Π ′ | Σ′ is a triple of:

1. the number of lss occurring in Π | Σ ` Π ′ | Σ′,
2. the number of inequalities missing from Π, that is, |{E0 6=E1 | E0, E1 ∈

fv(Π | Σ, Π ′ | Σ′) ∪ {nil}}rΠ|,
3. the length of Π | Σ ` Π ′ | Σ′, where length is defined in the obvious way

taking all simple formulæ to have length 1.
ut

When ps fails, the short story is that it has found a disproof of the goal. We
begin explaining this by analyzing entailments with antecedents in normal form.

Observation 11. The antecedent of every entailment to which no rule applies,
except possibly Frame and NonEmptyls, is in normal form.

For a more intuitive characterization of normal form, note that formulæ Π | Σ
in normal form satisfy the following properties:

1. No equalities E=E′ (other than reflexive E=E) are guaranteed to hold.
2. The only inequalities E 6=E′ guaranteed to hold appear explicitly in Π.
3. The only expressions E guaranteed to be in the domain of the heap appear

explicitly as E 7→E′ in Σ.

A key property of normal forms is satisfiability. Later we will make use of two
different types of model of such formulæ:

10

Definition 12 (Bad Model). For Π | Σ in normal form:

1. A bad model of Π | Σ is a state s , h � Π | Σ where nil /∈ range(s) and s is
one-one on fv(Π | Σ), and h is uniquely determined by s (as in Lemma 24).

2. A bad model of Π | Σ with x=E is a state s , h � Π∧x=E | Σ where, for s′ , h′

a bad model of Π | Σ, s = [s′ |x�JEKs′], and h is uniquely determined by s.

Lemma 13. For any formula Π | Σ in normal form:

1. There exists a bad model of Π | Σ.
2. For any x6=E /∈ Π, there exists a bad model of Π | Σ with x=E.

Now for the crux of correctness of ps in the failure case, and completeness of
the proof system: when ps reaches a stuck entailment, it is invalid, and invalidity
is preserved throughout the path of rule applications ps made from the goal to
the stuck entailment.6

Lemma 14 (Stuck Invalidity). Every entailment stuck for ps is invalid.

Proof (Sketch). Consider a stuck entailment Π | Σ ` Π ′ | Σ′, whose antecedent,
by Observation 11, is in normal form. Proceed by cases:

[Σ′ ≡ emp and Π ′ ≡ Π ′′ ∧ E=E′]: Note E 6≡ E′ since Π | Σ ` Π ′ | Σ′ is stuck.
Therefore a bad model of Π | Σ is a countermodel.

[Σ′ ≡ emp and Π ′ ≡ Π ′′ ∧ E 6=E′]: Note E 6=E′ /∈ Π since Π | Σ ` Π ′ | Σ′ is
stuck. Therefore a bad model of Π | Σ with E=E′ is a countermodel.

[Σ′ ≡ E 7→E′ ∗Σ′′]: Therefore since Π | Σ ` Π ′ | Σ′ is stuck, E 7→E′ /∈ Σ. Hence,
s , h a bad model of Π | Σ is a countermodel, since either JEKs /∈ dom(h) or
h(JEKs) 6= JE′Ks.

[Σ′ ≡ ls(nil, E) ∗Σ′′]: Therefore s , h a bad model of Π | Σ is a countermodel,
since nil 6= JEKs.

[Σ′ ≡ ls(x, E) ∗Σ′′ and for all E′. x7→E′ /∈ Σ]: Therefore s , h a bad model of Π |
Σ is a countermodel, since JxKs 6= JEKs and JxKs /∈ dom(h).

[Σ ≡ x7→E ∗Σ0 and Σ′ ≡ ls(x, E′) ∗Σ1]: Note that Σ1 contains only lss, since
the other cases have already been covered. Let s , h be a bad model of Π | Σ
with x=E′ (x6=E′ /∈ Π since Π | Σ ` Π ′ | Σ′ is stuck). Therefore s , h �
Π | x7→x ∗Σ0 and s , h 2 Π ′ | ls(x,E′) ∗Σ1, since no ls contains a nonempty
cycle, see Lemma 28. Therefore s , h is a countermodel. ut

Lemma 15 (Invalidity Preservation). For all rule applications satisfying
sidecondition (10) of Algorithm 8, invalidity of any of the rule’s premisses implies
invalidity of the rule’s conclusion.

Proof. See Section A.5. ut
6 Furthermore, countermodels of stuck entailments could be computed, and counter-

models of a rule’s conclusion could be computed from a countermodel of one the
rule’s premisses. So ps could be defined so as to either return a proof or a counter-
model of the goal.

11

Proposition 16 (Decidability). Validity of entailment is decidable, in par-
ticular, ps is a decision procedure.

Proof. Lemma 9 establishes termination. For correctness, in case ps returns nor-
mally with a proof, correctness is immediate from Proposition 6. Otherwise ps

has failed after reaching a stuck entailment. We argue that this implies inva-
lidity of the goal entailment, and hence correctness, by noting that each stuck
entailment is itself invalid, due to Lemma 14, and that each rule application in
the path from the goal preserves invalidity, due to Lemma 15. Transitively, all
the entailments down to the goal are invalid. ut

Unsurprisingly, completeness is immediate from decidability:

Corollary 17 (Completeness). Every underivable entailment is invalid.

5 Conclusions

In this paper we have proven a decidability result for a logic for just one kind of
pointer data structure: linked lists. And it was not easy work. There have been
other results as well in this territory (e.g., [7–10]) but, frankly, we are not sure if
it is possible to obtain a canonical decidable fragment that covers a large variety
of structures. For example, decidability of monadic second-order logic with a
unary function symbol [7] implies decidability of our fragment. However, that
result is only applicable because we used unary heap cells, while our techniques
generalize to n-ary heap cells (necessary for binary trees for example).

Although the main focus in this paper was decidability, the fragment appears
to be of some interest in itself. Crucially, its proof theory is extremely determin-
istic. In particular, there is no need to attempt many different splittings of a
context as is usually the case in proof-search for substructural logics. This is
a reflection of a semantic property enjoyed by the fragment: every assertion is
precise. This then implies that there can be at most one heap splitting used
to satisfy a ∗ formula. The absence of (general) disjunction in the fragment is
crucial for precision. It is, however, possible to incorporate restricted, disjoint,
forms of disjunction, corresponding to if-then-else, without sacrificing precision.
These forms are useful in playing the role of guards for inductive definitions, and
one of them is implicitly present in the ls predicate.

In future work we plan to add a mechanism for inductive definitions to the
fragment. At present we can see how some definitions (e.g., trees) preserve de-
cidability, but we are not sure how far we can go in this direction. Even if
decidability cannot be maintained, the computational nature of the proof the-
ory of precise predicates should give a way to selectively consider how deep to
go in inductions in a way that gives strong control over proof-search.

Acknowledgements. We are grateful to the anonymous referees for helpful
comments. During Berdine’s stay at Carnegie Mellon University, this research
was sponsored in part by National Science Foundation Grant CCR-0204242. All
three authors were supported by the EPSRC.

12

References

1. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
LICS, IEEE (2002) 55–74

2. Reynolds, J.C.: Intuitionistic reasoning about shared mutable data structure. In
Davies, J., Roscoe, B., Woodcock, J., eds.: Millennial Perspectives in Computer
Science, Houndsmill, Hampshire, Palgrave (2000) 303–321

3. Isthiaq, S., O’Hearn, P.: BI as an assertion language for mutable data structures.
In: POPL, London (2001) 39–46

4. O’Hearn, P., Reynolds, J., Yang, H.: Local reasoning about programs that alter
data structures. In: CSL. Volume 2142 of LNCS., Springer (2001) 1–19

5. Calcagno, C., Yang, H., O’Hearn, P.: Computability and complexity results for
a spatial assertion language for data structures. In: FSTTCS. Volume 2245 of
LNCS., Springer (2001) 108–119

6. O’Hearn, P.W., Yang, H., Reynolds, J.C.: Separation and information hiding. In:
POPL, Venice (2004) 268–280

7. Rabin, M.O.: Decidability of secon-order theories and automata on infinite trees.
Trans. of American Math. Society 141 (1969) 1–35

8. Jenson, J., Jorgensen, M., Klarkund, N., Schwartzback, M.: Automatic verification
of pointer programs using monadic second-order logic. In: PLDI. (1997) 225–236
SIGPLAN Notices 32(5).

9. Benedikt, M., Reps, T., Sagiv, M.: A decidable logic for describing linked data
structures. In: ESOP. Volume 1576 of LNCS., Springer (1999) 2–19

10. Immerman, N., Rabinovich, A., Reps, T., Sagiv, M., Yorsh, G.: Verification via
structure simulation. In: CAV. Volume 3114 of LNCS. (2004)

13

A Appendix: Selected Proofs

A.1 Full Separation Logic

The full semantics of the separation logic connectives used in the metatheory
extends Table 1 as follows:

s , h � A→ B
def

iff s , h � A implies s , h � B

s , h � A −−∗ B
def

iff for all h′ ⊥ h. s , h′ � A implies s , h∗h′ � B

s , h � ∃x. A
def

iff there exists v ∈ Values. [s |x�v] , h � A

Also, note that E↪→E′ abbreviates E 7→E′ ∗ true, E 6↪→E′ abbreviates ¬(E↪→E′).
We sometimes write formulæ with a blank A[−] as a shorthand for ∃x.A[x] for
x fresh. In these cases, the scope of the new variable is taken to be as narrow as
possible: for example E 6↪→− abbreviates ¬(∃x. E↪→x).

A.2 Proof of Lemma 3 from Section 3

The proof proceeds by an argument similar to that in [5]:
First we define an equivalence which equates states up to renaming L-values,

and arbitrary differences on variables other than those in a given set:

Definition 18. s , h ≈X s′ , h′ if and only if there exists a bijection r ∈ Values→
Values such that r(nil) = nil , r(s(x)) = s′(x) for all x ∈ X, and either
l /∈ dom(h) and r(l) /∈ dom(h′) or r(h(l)) = h′(r(l)) for all l ∈ L-values.

The main property of this relation is that formulæ are insensitive to differences
between equivalent states:

Lemma 19. If s , h ≈fv(A) s′ , h′, then s , h � A if and only if s′ , h′ � A.

We now identify a finite set of canonical stacks:

Definition 20. The set SΠ |Σ of canonical stacks with respect to Π | Σ is defined
as follows: s ∈ SΠ |Σ iff s(Variablesrfv(Π | Σ)) ⊆ {nil}, and s(fv(Π | Σ)) ⊆
L ∪ {nil} where L consists of the first |fv(Π | Σ)|-many L-values.

Observation 21. The set SΠ |Σ is finite for any Π | Σ.

There are enough canonical stacks that every state is equivalent to one whose
stack is canonical:

Lemma 22. For Π | Σ and all s , h ∈ States, there exist s′ ∈ SΠ |Σ , h′ ∈ Heaps
such that s , h ≈fv(Π |Σ) s′ , h′.

It is then immediate that considering only finitely-many stacks suffices:

Corollary 23. For Π | Σ, Π ′ | Σ′

for all s , h ∈ States. s , h � Π | Σ implies s , h � Π ′ | Σ′

iff for all s ∈ SΠ |Σ , h ∈ Heaps. s , h � Π | Σ implies s , h � Π ′ | Σ′

14

Now since the antecedent does not contain ls, it suffices to consider a single heap
for each stack:

Lemma 24. For Π | Σ,Π ′ | Σ′ such that no subformula of Σ is of form
ls(E1, E2), and s ∈ Stacks, checking for all h ∈ Heaps. s , h � Π | Σ implies s , h �
Π ′ | Σ′ is decidable.

Proof. Since ls does not appear in Σ, Σ ≡ E1 7→E′
1 ∗ · · · ∗En 7→E′

n ∗ emp for some
n. Therefore, since s is fixed, this determines a unique heap h which may model
Π | Σ; for all others the desired implication holds vacuously. The result then
follows from Lemma 1. ut

Lemma 3. For fixed Π, Σ, Π ′, Σ′ such that no subformula of Σ is of form
ls(E1, E2), checking Π | Σ ` Π ′ | Σ′ is decidable.
Proof. Compose Corollary 23 and Lemma 24. ut

A.3 Proof of (3) from Section 3.1

The proof makes use of the following additional lemmas:

Lemma 25. Adjacent lss whose end dangles can be appended:(
(ls(E1, E2) ∧ E3 6↪→−) ∗ ls(E2, E3)

)
→ ls(E1, E3)

Lemma 26. The end point of a nonempty ls is pointed to:

(E1 6=E2 ∧ ls(E1, E2))→ −↪→E2

Lemma 27. A ls with an internal link can be split into two separate lss at the
link:

(ls(E1, E3) ∧ E2↪→−)→ (ls(E1, E2) ∗ ls(E2, E3))

Lemma 28. A ls cannot contain (nonempty) cycles:

ls(E1, E4)→
(
E2 6↪→E2 ∧ ¬

(
E2 6=E3 ∧ (ls(E2, E3) ∗ true) ∧ (ls(E3, E2) ∗ true)

))
Lemma 29. A ls with a nonempty subls can be split into three separate lss:

ls(E1, E4) ∧ (E2 6=E3 ∧ ls(E2, E3) ∗ true)
→ ls(E1, E2) ∗ ls(E2, E3) ∗ ls(E3, E4)

Proof. Fix s , h and assume the antecedent: s , h � ls(E1, E4)∧(E2 6=E3∧ls(E2, E3)∗
true). Therefore

s , h � ls(E1, E4) (11)
s , h23 � E2 6=E3 ∧ ls(E2, E3) (12)

for h23 ⊆ h. Therefore s , h2− � E2 7→− for h2− ⊆ h23, and hence s , h � E2↪→−,
and hence s , h � ls(E1, E4) ∧ E2↪→−. Thus Lemma 27 applies, and we have

s , h � ls(E1, E2) ∗ ls(E2, E4) (13)

Proceed by cases:

15

[JE3Ks = JE4Ks]: Therefore s , ∅ � ls(E3, E4). Therefore, by (13) and the case
equality, s , h � ls(E1, E2)∗ls(E2, E3), and hence s , h � ls(E1, E2)∗ls(E2, E3)∗
ls(E3, E4).

[JE3Ks 6= JE4Ks]: By (12) and Lemma 26, s , h23 � −↪→E3, and hence s , h �
−↪→E3. Therefore by the case inequality, (11), and (2), s , h � E3↪→−.
Now by (13), h = h12∗h24 such that

s , h12 � ls(E1, E2) (14)

and
s , h24 � ls(E2, E4) (15)

So proceed by cases:
[s , h12 � E3↪→−]: Therefore by (14) and Lemma 27, s , h12 � ls(E1, E3) ∗

ls(E3, E2). Therefore by (12), s , h � (ls(E2, E3)∗true)∧(ls(E3, E2)∗true),
which with (11), contradicts Lemma 28.

[s , h24 � E3↪→−]: Therefore, by (15), s , h24 � ls(E2, E4)∧E3↪→−, and hence
by Lemma 27, s , h24 � ls(E2, E3) ∗ ls(E3, E4). Therefore by (14), s , h �
ls(E1, E2) ∗ ls(E2, E3) ∗ ls(E3, E4). ut

Lemma 30 ((3)). Models of sublss can be changed provided cycles are not
introduced:

ls(E1, E4) ∧ (ls(E2, E3) ∗ true)
↔ (ls(E2, E3) ∧ E4 6↪→−) ∗

(
(ls(E2, E3) ∧ E4 6↪→−) −−∗ ls(E1, E4)

) (3)

Proof. [→]: Fix s , h, assume the antecedent: s , h � ls(E1, E4)∧(ls(E2, E3)∗true),
and proceed by cases:
[JE2Ks = JE3Ks]: Immediate.
[JE2Ks 6= JE3Ks]: Therefore h = h23∗h′ such that s , h23 � ls(E2, E3). Also,

by (1), s , h � E4 6↪→−, and hence, s , h23 � E4 6↪→−. Furthermore, with
the case assumption, by Lemma 29, s , h � ls(E1, E2) ∗ ls(E2, E3) ∗
ls(E3, E4). Therefore, by precision of ls(E2, E3), s , h′ � ls(E1, E2) ∗
ls(E3, E4). Hence s , h12 � ls(E1, E2) for h12 ⊆ h′, and so h12 � E4 6↪→−.
Now fix h−−∗ ⊥ h′ such that s , h−−∗ � ls(E2, E3) ∧ E4 6↪→−. Therefore
s , h−−∗∗h′ � (ls(E1, E2) ∧ E4 6↪→−) ∗ (ls(E2, E3) ∧ E4 6↪→−) ∗ ls(E3, E4).
Hence, by Lemma 25 twice, s , h−−∗∗h′ � ls(E1, E4). Therefore s , h′ �
(ls(E2, E3) ∧ E4 6↪→−) −−∗ ls(E1, E4), and hence, s , h � (ls(E2, E3) ∧
E4 6↪→−) ∗ ((ls(E2, E3) ∧ E4 6↪→−) −−∗ ls(E1, E4)).

[←]: Immediate. ut

A.4 Proof of Lemma 5 from Section 3.1

The proof makes use of the following consequence of the fact that all formulæ
are precise:

16

Lemma 31. For any singleton subheap of a model of a spatial formula, there is
a simple spatial formula modeled by an extension of the subheap:

If s , h0∗h1 � Σ for h0 a singleton heap, then there exists S such that:

1. Σ ≡ S ∗Σ′ for some Σ′, and
2. s , h0∗h′1 � S for some h′1 ⊆ h1.

Lemma 5.
If Π | ls2(E2, E3) ∗Σ ` Π ′ | Σ′ (4)
and s , h � Π ∧ E2 6=E3 ∧ E2 6↪→−∧Σ (5)

then s , h � Π ′ ∧ (ls(E2, E3) −−∗ Σ′)

Proof. Choose x fresh and

l ∈ L-valuesrs(fv(Π, E2, E3, Σ,Π ′, Σ′))rdom(h) (16)

and define s′ = [s |x�l]. Now define

h2 = [JE2Ks′�l] (17)
and hl = [l�JE3Ks′] (18)

and so
s , h2∗hl � ls2(E2, E3) (19)

Also, by (5) and (16), h2∗hl ⊥ h.
Therefore by (5), s′ , h2∗hl∗h � Π | ls2(E2, E3) ∗Σ. Therefore (4) applies and

we have
s′ , h2∗hl∗h � Π ′ | Σ′ (20)

Therefore Lemma 31 applies with [s′/s |h2/h0 |hl∗h/h1 |Σ′/Σ], so let S be the
simple spatial formula whose existence it ensures. Therefore

Σ′ ≡ S ∗Σ′′

and hl∗h = hS∗hΣ′′ (21)
such that s′ , h2∗hS � S (22)

Therefore by (20) and precision of S

s′ , hΣ′′ � Π ′ | Σ′′ (23)

Proceed by cases on the syntax of S:

[S ≡ E1 7→E4]: Impossible: Therefore by (22) and (17), JE1Ks′ = JE2Ks′, since
h2∗hS must be a singleton. Hence, JE4Ks′ = l. But, by (16), JE4Ks′ = JE4Ks 6=
l, contradiction.

17

[S ≡ ls(E1, E4)]: Note that, by (17), s′ , h2 � −↪→x. Then, by (16), JE4Ks′ =
JE4Ks 6= l, and so s′ , h2 � x6=E4 ∧ −↪→x. Therefore by (22), s′ , h2∗hS �
x6=E4 ∧ ls(−, E4) ∧ −↪→x, and by (2), s′ , h2∗hS � x↪→−. Since by (16),
JE2Ks′ = JE2Ks 6= l, and by (18), hS = hl∗h′ for some h′. Therefore by (21)

h = h′∗hΣ′′ (24)

and by (22)
s , h2∗hl∗h′ � ls(E1, E4) (25)

Therefore by (19) and (3), s , h2∗hl∗h′ � (ls(E2, E3)∧E4 6↪→−)∗((ls(E2, E3)∧
E4 6↪→−) −−∗ ls(E1, E4)). Therefore by (19) and precision of ls(E2, E3)

s , h′ � (ls(E2, E3) ∧ E4 6↪→−) −−∗ ls(E1, E4) (26)

In order to prove s , h � ls(E2, E3) −−∗ Σ′, fix:[
h−−∗ ⊥ h such that s , h−−∗ � ls(E2, E3)

]
: Proceed by cases:[

s , h−−∗ � E4↪→−
]
: Proceed by cases:

[JE3Ks = JE4Ks]: Impossible: Therefore s , h−−∗ � ls(E2, E4). There-
fore by (1), s , h−−∗ � E4 6↪→−, which contradicts the once removed
case assumption.

[JE3Ks 6= JE4Ks]: Proceed by cases:

[JE2Ks = JE4Ks]: Impossible: Therefore by (25), s , h2∗hl∗h′ �
ls(E1, E2). Hence by (1), s , h2∗hl∗h′ � E2 6↪→−, which con-
tradicts (17).

[JE2Ks 6= JE4Ks]: Impossible: Define

h243 = [JE2Ks�JE4Ks | JE4Ks�JE3Ks] (27)

Note h243 is well-defined by the case assumption, and h243⊥h
since, by (5) and the thrice removed case assumption, JE2Ks /∈
dom(h), and also by the twice and thrice removed case as-
sumptions, JE4Ks /∈ dom(h). Therefore by (5) and the once
removed case assumption, s , h243 � ls2(E2, E3), and hence by
(5), s , h243∗h � Π∧ls2(E2, E3)∗Σ, and by (4), s , h243∗h � Σ′,
and hence s , h243∗h � S ∗ Σ′′. Therefore by (24), (23), and
precision of Σ′′, s , h243∗h′ � S, that is s , h243∗h′ � ls(E1, E4).
Therefore by (1), s , h243∗h′ � E4 6↪→−, which contradicts (27).[

s , h−−∗ � E4 6↪→−
]
: Therefore s , h−−∗ � ls(E2, E3)∧E4 6↪→−. Therefore

by (26), s , h−−∗∗h′ � ls(E1, E4), and hence by (23), s , h−−∗∗h′∗hΣ′′ �
ls(E1, E4) ∗Σ′′, and by (24), s , h−−∗∗h � ls(E1, E4) ∗Σ′′.

Therefore s , h � ls(E2, E3) −−∗ Σ′, and hence by (23), s , h � Π ′∧(ls(E2, E3) −−∗
Σ′). ut

18

A.5 Proof of Lemma 15 from Section 4.1

Lemma 15 (Invalidity Preservation). For all rule applications satisfying
sidecondition (10) of Algorithm 8, invalidity of any of the rule’s premisses implies
invalidity of the rule’s conclusion.

Proof. We prove the contrapositive:

[UnrollCollapse]: Any model of either premiss’s antecedent also models the
conclusion’s antecedent, and hence, by validity of the conclusion, models the
conclusion’s consequent, which is also the premiss’s consequent.

[Frame]: Suppose Π | S ∗ Σ is in normal form, by (10), and Π | S ∗ Σ ` Π ′ |
S ∗ Σ′ is valid, and fix s , h such that s , h � Π | Σ. Therefore S ≡ E0 7→E′

0,
Σ ≡ E1 7→E′

1 ∗ · · · ∗ En 7→E′
n ∗ emp for some n, and E0 6=Ei ∈ Π for all

1 ≤ i ≤ n. Hence JE0Ks /∈ {JEiKs | 1 ≤ i ≤ n} = dom(h). Therefore
h′ = [h | JE0Ks�JE′

0Ks] is well-defined, and s , h′ � Π | S∗Σ. Hence by validity
of the conclusion, s , h′ � Π ′ | S ∗Σ′, and by precision of S, s , h � Π ′ | Σ′.

[NonEmptyls]: Similar, since NonEmptyls simply unrolls the ls once (which is
an identity in the model) and then applies Frame.

We omit the other cases, which are straightforward calculations in the model.
ut

19

