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Abstract. Separation logic is a program logic for reasoning about pro-
grams that manipulate pointer data structures. We describe Smallfoot, a
tool for checking certain lightweight separation logic specifications. The
assertions describe the shapes of data structures rather than their de-
tailed contents, and this allows reasoning to be fully automatic. The
presentation in the paper is tutorial in style. We illustrate what the tool
can do via examples which are oriented toward novel aspects of separa-
tion logic, namely: avoidance of frame axioms (which say what a proce-
dure does not change); embracement of “dirty” features such as memory
disposal and address arithmetic; information hiding in the presence of
pointers; and modular reasoning about concurrent programs.

1 Introduction

Separation logic is a program logic geared toward specifying and verifying proper-
ties of dynamically-allocated linked data structures [35], which has lead to much
simpler by-hand specifications and program proofs than previous formalisms.
Specifications in separation logic are “small”, in that a specification of a pro-
gram component concentrates on the resources relevant to its correct operation
(its “footprint”), not mentioning the resources of other components at all [32].
In this paper we describe Smallfoot, an experimental tool for checking certain
separation logic specifications.

The aim of the tool was simple: we wanted to see whether the simplicity
of the by-hand proofs in separation logic could be transferred to an automatic
setting. Smallfoot uses lightweight assertions that describe the shapes of data
structures rather than their detailed contents; this restriction allows the rea-
soning to be fully automatic. The input language allows first-order procedures
with reference and value parameters, essentially as in [17], together with oper-
ations for allocating, deallocating, mutating and reading heap cells. Smallfoot
requires pre- and post-conditions for the procedures, and loop invariants. It also
supports annotations for concurrency, following a concurrent extension of sepa-
ration logic [31, 11].

In [5] we defined the symbolic execution mechanism and proof procedure that
lie at the heart of Smallfoot, but we did not there show how they could be used
to prove programs. The purpose of this paper is the opposite: to show what the



tool can do, without exposing its innards. We proceed in a tutorial style. We
describe in an informal way how the proof rules of [32, 35, 31] are used in the
tool, in conjunction with the execution mechanism, but we do not give a fully
formal description or a repeat of the techniques of [5]. For a full understanding
of exactly how Smallfoot works familiarity with [32, 35, 31, 5] is essential. But we
have tried to make the presentation relatively self-contained, and we hope that
many of the main points can be gleaned from our examples and the discussion
surrounding them.

We begin in the next section by introducing Smallfoot with three examples.
The purpose of this work is to explore separation logic’s modularity in an au-
tomatic setting, and that is the subject of all three examples. We will discuss
some of the features of Smallfoot as we go through the examples, and highlight
some of the issues for automation that guided its design. A description of the
input language and some central points in the verification condition mechanism
is then given in Sections 3 and 4. Several further examples are given in Section
5, and we conclude with a discussion of related and future work.

We stress that Smallfoot is limited in various ways. Its input language has
been designed to match the theoretical work on separation logic, rather than an
existing widely-used language; our purpose was to experiment with the logic,
rather than to produce a mature end-user tool. Beyond the basic primitives of
separation logic, Smallfoot at this point includes several hardwired predicates for
singly-, doubly-, and xor-linked lists, and for trees, but not (yet) a mechanism
for arbitrary inductive definitions of data structures. We included xor lists just
to illustrate how reachability does not feature in separation logic; we have not
incorporated more general address arithmetic. Smallfoot cannot handle all of the
more advanced algorithms that have been the subject of by-hand proofs in sep-
aration logic, particularly graph algorithms [40, 6, 7]. Further, it does not have
specifications for full functional correctness. Extensions in some of these direc-
tions would necessitate abandoning the automatic aspect, relying on interactive
proof. Those are areas for further work.

2 Smallfoot in Three Nutshells

We begin with a warning: you should suspend thinking about the global heap
when reading separation logic specifications, otherwise the logic can seem coun-
terintuitive. Rather than global heaps you can think of heaplets, portions of
heap. An assertion talks about a heaplet rather than the global heap, and a spec
[P ]C [Q] says that if C is given a heaplet satisfying P then it will never try to
access heap outside of P (other than cells allocated during execution) and it will
deliver a heaplet satisfying Q if it terminates. (Of course, this has implications
for how C acts on the global heap.) This heaplet reading may seem a simple
point, but we have found that separation logic’s “local way of thinking” can lead
to confusions, which arise from reverting to thinking in terms of the global heap.
So we will return to this point several times below.
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2.1 Local Specifications and Framing

Consider a procedure for disposing a tree:

disp_tree(p) [tree(p)] {

local i,j;
if (p = nil) {} else {

i := p�l; j := p�r; disp_tree(i); disp_tree(j); dispose(p); }

} [emp]

This is the expected procedure that walks a tree, recursively disposing left and
right subtrees and then the root pointer. It uses a representation of tree nodes
with left and right fields, and the empty tree is represented by nil.

This Smallfoot program includes a precondition and postcondition, corre-
sponding to a partial correctness specification:

[tree(p)] disp_tree(p) [emp]

(We use square instead of curly brackets, despite treating partial correctness, to
maintain consistency with Smallfoot’s concrete syntax.) This is an example of
the small specifications supported by separation logic: it talks only about the
portion of heap relevant to the correct operation of the procedure. In particular,
tree(p) describes a heaplet where p points to a tree, and where there are no junk
cells, cells not in the tree. This “no junk cells” part is necessary to be able to
conclude emp, that the heaplet on termination is empty.

Smallfoot discovers a proof of this program by symbolic execution. The proof
in the else branch corresponds to the proof steps:

[(p7→l: x, r: y) ∗ tree(x) ∗ tree(y)]
i := p�l; j := p�r;

[(p7→l: i, r: j) ∗ tree(i) ∗ tree(j)]
disp_tree(i);

[(p7→l: i, r: j) ∗ tree(j)]
disp_tree(j);

[p7→l: i, r: j]
dispose(p);

[emp]

After we enter the else branch we know that p 6=nil so that, by unrolling, p is an
allocated node that points to left and right subtrees occupying separate storage.
Then the roots of the two subtrees are loaded into i and j. Notice how the
next proof steps follow operational intuition. The first recursive call removes the
left subtree, the second call removes the right subtree, and the final instruction
removes the root pointer p. The occurrences of the separating conjunction ∗ in
these assertions ensure that the structures described, the two subtrees and root
pointer, occupy separate memory, as is necessary if an operation that removes
one of them is not to affect one of the others. This verification is carried out
using the specification of disp_tree as an assumption, as in the usual treatment
of recursive procedures in Hoare logic [17].

3



In the if branch we use an implication tree(p)∧p=nil⇒ emp, which relies on
the “no junk” character of the tree predicate.

The assertions in this proof use very little of separation logic; they are all of
the form Π ∧Σ where Π is a pure boolean condition and Σ is a ∗-combination
of heap predicates. All of the assertions in Smallfoot are of this special form
(together with conditionals over them), and this enables a symbolic execution
mechanism where ∗-conjuncts are updated in-place.

There is a hidden part in the proof outline just given: in the two procedure
calls the preconditions at the call sites do not match the preconditions for the
overall specification of disp_tree. For example, for the second call the assertion
at the call site is (p 7→l: i, r: j)∗tree(j) while the procedure spec would suggest that
the precondition should just be tree(j) (after renaming of the parameter). This
is where the local way of thinking comes in. The specification of disp_tree says
that a heaplet satisfying tree(j) is transformed into one satisfying emp. The input
heaplet need not be the whole heap, we can effect this transformation on a heap-
let that lives inside a larger heap, and then slot the result into that larger heap.

In separation logic, this pulling out and slotting in is described using the
∗ connective. Generally, a heaplet h satisfies P ∗ Q if it can be split into two
disjoint heaplets hP and hQ that satisfy P and Q. The above narrative for the call
disp_tree(j) tells us to take (p 7→l: i, r: j)∗tree(j), pull out the heaplet description
tree(j), transform it to emp, and slot that back in, obtaining (p 7→l: i, r: j) ∗ emp.
Then, we can use an identity P ∗ emp ⇔ P .

Separation logic has an inference rule (the frame rule)

[P ]C [Q]
[R ∗ P ]C [R ∗Q]

(where C doesn’t assign to R’s free variables) which lets us do “pull out, perform
local surgery, slot in” in a proof. To automatically generate proofs using this rule,
which was implicitly applied in the steps in the proof for the else branch above,
we need a way to infer frame axioms. If we are given an assertion at a call site
and a procedure precondition, we must find the leftover part (which lets us do
the “pull out” step). Often, this leftover part can be found by simple pattern
matching, as is the case in the disp_tree example, but there are other cases where
pattern matching will not do. Technically, Smallfoot uses a method of extracting
frame axioms from incomplete proofs in a proof theory for entailments [5].

2.2 Processes that Mind Their Own Business

Concurrent separation logic [31] has the following rule for parallel composition:

[P ]C [Q] [P ′]C ′ [Q′]
[P ∗ P ′]C ‖ C ′ [Q ∗Q′]

where C does not change variables free in P ′, C ′, Q′, and vice versa. The idea
of this rule is that the specifications [P ]C [Q] and [P ′]C ′ [Q′] describe all the
resources that C and C ′ might access, that they mind their own business; so,
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if we know that the resources are separate in the precondition, then we can
reason about the concurrent processes independently. A simple example of this
is a parallel composition of two heap alterations on different cells, where the ∗
in the precondition guarantees that x and y are not aliases:

[x7→c: 3 ∗ y 7→c: 3]
[x7→c: 3]
x�c := 4

[x7→c: 4]

∥∥∥∥∥∥∥
[y 7→c: 3]
y�c := 5

[y 7→c: 5]
[x7→c: 4 ∗ y 7→c: 5]

The local thinking is exercised more strongly in concurrent than in sequential
separation logic. A points-to fact x7→c: 3 describes a heaplet with a single cell
x that is a record with a c field whose value is 3. As far as the left process is
concerned, reasoning is carried out for a heaplet with a single cell, its heaplet,
and similarly for the right. In the global heap, though, it is not the case that
there is only one cell; there are at least two! The two views, local and more
global, are reconciled by the form of the concurrency rule.

To apply the concurrency rule automatically we need a way to get our hands
on the preconditions of the constituent processes. We could do this in several
ways, such as by requiring an annotation with each ‖, or by introducing a “named
process” concept which requires a precondition but no postcondition. We settled
on requiring the constituents of a ‖ to be procedure calls; because procedures
come with pre/post specs we can use their preconditions when applying the
concurrency rule. The postconditions are not strictly necessary for automating
the concurrency rule. We made this choice just to avoid multiplying annotation
forms. A Smallfoot program corresponding to the above example, but where we
create the two separate cells, is:

upd(x,y) [x7→] {x�c := y;} [x7→c: y]

main() {

x := new(); y := new(); x�c := 3; y�c := 3;
upd(x,4) ‖ upd(y,5);

} [x7→c: 4 ∗ y 7→c: 5]

In the precondition of upd the assertion x7→ indicates that x points to something.
It denotes a singleton heaplet in which x is the only allocated or defined cell.
The postcondition describes a singleton heaplet where the c field of location x
has y as its contents.

When a pre- or post-condition is left out, as the pre for main is in this program,
it defaults to emp. Also, Smallfoot accepts a collection of procedures as input,
one optionally “main”.

In contrast, when we change the main program to

main() {

x := new(); x�c := 3; y := x;
upd(x,4) ‖ upd(y,4);

} [y=x ∧ x7→c: 4]
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then Smallfoot flags an error; since x and y are aliases, there is no way to split
the heap into two parts, giving one symbolic cell to each of the constituent
processes. In general, if a Smallfoot program has a race — where two processes
may attempt to access the same cell at the same time — then an error is reported.
(More precisely, any such attempted parallel accesses must be wrapped in critical
sections which specify atomicity assumptions for accesses.)

Our description of how the proof is found for sequential disp_tree is almost
the same for a parallel variant, which Smallfoot proves using the concurrency
rule:

par_disp_tree(p) [tree(p)] {

local i,j;
if (p = nil) {} else {

i := p�l; j := p�r;
par_disp_tree(i) ‖ par_disp_tree(j);
dispose(p); }

} [emp]

The reader’s reaction to disp_tree and par_disp_tree might be: aren’t they
rather trivial? Well, yes, and that is part of the point. For contrast, consider
par_disp_tree in the rely/guarantee formalism [21, 27], which is rightly cele-
brated for providing compositional reasoning about concurrency. In addition to
a precondition and a postcondition saying that the nodes in the tree are deallo-
cated, we would have to formalize two additional assertions:

Rely No other process touches my tree tree(p); and
Guarantee I do not touch any storage outside my tree.

Although compositional, as this example demonstrates the relies and guarantees
can be rather global, and can complicate specifications even in simple examples
when no interference is present. The Smallfoot specification for this procedure
is certainly simpler.

2.3 Process Interaction and Heaplet Transfer

Process interaction in Smallfoot is done with conditional critical regions (ccrs)
[18]. The programming model is based on “resources” r and ccr statements
with r when(B) {C}. ccrs for common resource r must be executed with mutual
exclusion, and each has a guard which must hold before execution.

Data abstractions can be protected with ccrs by wrapping critical regions
around code that accesses a data structure. A more daring form of concurrency
is when several processes access the same piece of state outside of critical sec-
tions [31]. In separation logic it is possible to show that daring programming
idioms are used consistently. An example is a pointer-transferring buffer: in-
stead of copying a (perhaps large) portion of data from one process to another,
a pointer to the data is sent. Typically, the sending and receiving processes access
the pointer without synchronization.
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A toy version of this scenario is the following code snippet using buffer op-
erations put and get:

x := new();

put(x);
∥∥ get(y;);

dispose(y);

This creates a new pointer in the left process and then places it in the buffer.
The right process then reads out the pointer and disposes it. We would typically
want to fill the pointer contents in the left process before sending it, and to do
something with those contents in the right. The point is that to reason about
the dispose in the right process we must know that y is not dangling after we do
the get operation. It is useful to use the intuition of “permission to access” to
describe this [9, 8]: the permission to access the pointer moves from the first to the
second process along with the pointer value. Further, when permission transfers
it must disappear from the left process or else we could mistakenly justify a
further dispose(x) in the left process, after the put. In conjunction with the
dispose(y) in the right process that would disastrously lead to a double-disposal
that we must rule out.

This is where the local way of thinking helps. An assertion at a program
point describes a heaplet, which represents a local permission to access, instead
of a global heap. put(x) will have precondition x7→ and postcondition emp, the
idea being that the heaplet for x flows out of the left process and into the buffer.
The emp postcondition ensures that, even if the value of x remains unchanged,
the local knowledge that x is not dangling (the permission) is given up, thus
preventing further disposal. At this point the global heap is not empty, but the
heaplet/permission for the left process is. get(y;) will have precondition emp
and postcondition y 7→, connoting that the heaplet (the permission) materializes
in the second process.

A Smallfoot program encoding this scenario is:

resource buf (c) [if c=nil then emp else c7→]

init() { c := nil; }

put(x) [x7→] { with buf when(c=nil) { c := x; } } [emp]

get(y;) [emp] { with buf when(c 6=nil) { y := c; c := nil; } } [y 7→]

putter() { x := new(); put(x); putter(); }

getter() { get(y;); /* use y */ dispose(y); getter(); }

main() { putter() ‖ getter(); }

In the ccr model resource names are used to determine units of mutual
exclusion. Different ccrs with r when(B) {C} for the same resource name r
cannot overlap in their executions. A ccr can proceed with its body C only when
its boolean condition B holds. A resource declaration indicates some private
variables associated with the resource (in this case c) and an invariant that
describes its internal state.
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When we have resource declarations as here an init procedure is needed for
initialization; when we do not have a resource declaration, the initialization can
be omitted. The init procedure is run before main; it’s job is to set up the state
that is protected by the named resource, by establishing the resource invariant.

In this code the omitted preconditions and postconditions are all (by default)
emp, except the post of init which is (by default) the resource invariant (the
assertion in the resource declaration). The put and get operations are encoded
using little critical regions. The resource buf has an invariant which describes
its heaplet: it says that if c=nil then the buffer has no permission, else it holds
permission to access c. The put operation can fire only when c=nil, and so
because of the invariant we will know at that point that buf’s heaplet is emp.
The assignment c:=x changes the buf state so that the only way for the invariant
to be true is if c7→; the permission to access the pointer (at this point denoted by
both c and x) flows into the buffer. Furthermore, the put operation cannot have
x7→ as its postcondition because separation is maintained between the resource
invariant and the heaplet assertions for the two processes. A similar narrative can
be given about how get effects a transfer from the buffer to the getter process.

In fact, the annotations in this code are more than is strictly needed. If we
were to inline put and get, then Smallfoot would verify the resulting code. We
separated out these operations only to display what their specifications are.

What makes this all work is an inference rule

[(P ∗Rr) ∧B]C [Q ∗Rr]
[P ] with r when(B) {C} [Q]

where Rr is an invariant formula associated with resource r. This rule is used to
verify the put and get procedures, and the concurrency rule is then used for the
composition of putter and getter. Even though the program loops, the fact that
it gets past Smallfoot ensures that no pointer is ever disposed twice (without
an intervening allocation), that there is no race condition, and that the resource
invariant is true when not in the middle of a critical section.

Besides the separation between resource and process enforced using ∗, this
rule (which stems originally from [18]) is wonderfully modular: the precondition
and postcondition P and Q of a ccr do not mention the invariant Rr at all. This
allows reasoning about processes in isolation, even in the presence of interaction.

3 The Input Language

3.1 Annotated Programs

A Smallfoot program consists of sets of resource declarations

resource r(~xr)Rr

where ~xr and Rr are resource r’s protected variables and invariant; and procedure
declarations

f(~p ; ~v)[Pf ]Cf [Qf ]
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where procedure f ’s parameters ~p are passed by reference and ~v by value, and
assertions Pf and Qf are f ’s pre- and post-conditions. In this formal description
the preconditions and postconditions have to be included, but we repeat that
in the tool if a pre or post is left out then it is emp by default. Assertions are
described later; commands are generated by:

E ::= x | nil | c | E xorE

B ::= E=E | E 6=E

S ::= x:=E | x:=E�t | E�t:=E | x:= new() | dispose(E)
C ::= S | C ;C | if(B) {C} else {C} | while(B) [I] {C}
| f(~x ; ~E) | f(~x ; ~E) ‖ f(~x ; ~E) | with r when(B) {C}

There is the additional evident constraint on a program that in any procedure
call f(~y ; ~E) or region with r when(B) {C} the variable f/r must be defined in a
procedure/resource declaration.

Smallfoot programs are subject to certain variable restrictions, which are
needed for the soundness of Hoare logic rules; for example, that variable aliasing
and concurrent races for variables (not heap cells) are ruled out. These conditions
are, in general, complex and unmemorable; they may be found in [4].

3.2 Assertions and Specifications

The assertions are ∗-combinations of heap predicates and ∧-combinations of
pure boolean facts, together with conditionals over these. Conditionals are used
rather than disjunctions because they preserve the “preciseness” property that
is needed for soundness of concurrent separation logic [11]. The heap predicates
include the points-to relation, the tree predicate, a predicate for singly-linked list
segments and one for xor-linked lists. (We also have conventional doubly-linked
lists in Smallfoot, but do not include any examples for them in this paper.)

P,Q,R, I ::= Π ∧Σ | if B then P else P H ::= E 7→ρ | tree(E) | ls(E,E)
Π ::= B1 ∧ · · · ∧Bn | true | false | xlseg(E,E,E, E)
Σ ::= H1 ∗ · · · ∗Hn | emp ρ ::= t1:E1, . . . , tn:En

The model assumes a finite collection Fields (from which the ti are drawn),
and disjoint sets Loc of locations and Values of non-addressable values, with
nil ∈ Values. We then set:

Heaps def= Loc fin
⇀ (Fields→ Values ∪ Loc)

Stacks def= Variables→ Values ∪ Loc

In this heap model a location maps to a record of values. The formula E 7→ρ can
mention any number of fields in ρ, and the values of the remaining fields are
implicitly existentially quantified.
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For s ∈ Stacks, h ∈ Heaps, the key clauses in the satisfaction relation for
assertions are as follows:

s � E=F
def

iff JEKs = JF Ks

s � E 6=F
def

iff JEKs 6= JF Ks

s � Π0 ∧Π1

def

iff s � Π0 and s � Π1

s, h � E0 7→t1:E1, . . . , tk:Ek

def

iff h = [JE0Ks�r] where r(ti) = JEiKs for i ∈ 1..k

s, h � emp
def

iff h = ∅
s, h � Σ0 ∗Σ1

def

iff ∃h0, h1. h = h0∗h1 and s, h0 � Σ0 and s, h1 � Σ1

s, h � Π ∧Σ
def

iff s � Π and s, h � Σ

For pure assertions Π we do not need the heap component in the satisfaction
relation. h = h0∗h1 indicates that the domains of h0 and h1 are disjoint, and
that h is their graph union. The semantics JEKs ∈ Values of expressions is as
expected. We will not provide semantic definitions of the predicates for trees and
lists now, but give inductive characterizations of them later.

Each command C determines a relation:

JCK: (Stacks×Heaps)←→ (Stacks×Heaps) ∪ {fault}

The fault output occurs when a command attempts to dereference a dangling
pointer. For example, x�tl:= y produces a fault when applied to state s, h, where
s(x) is not a location in the domain of h. We will not give a formal definition of
JCK; when considering concurrency it is especially intricate [11]. The interpreta-
tion of Hoare triples is:

[P ]C [Q] holds if, whenever given a state satisfying P , C will not pro-
duce a fault and, if it terminates, will deliver a state satisfying Q. More
mathematically: s, h � P ∧ (s, h)JCKσ =⇒ σ 6= fault ∧ σ � Q

This interpretation guarantees that C can only access heap which is guaranteed
to exist by P . For, if C were to alter heap outside of an assertion P , then it
would fault when that heap was deleted, and that would falsify [P ]C [Q].

4 Verification Condition Generation

Smallfoot chops an annotated program into Hoare triples for certain symbolic
instructions, that are then decided using the symbolic execution mechanism
of [5]. Execution reduces these triples to entailments P ` Q. These entailments
are usually called verification conditions; we will use the same terminology for
the output of the chopping phase, before the execution phase.

4.1 Verification Conditions

A verification condition is a triple [P ]SI [Q] where SI is a “symbolic instruction”:

SI ::= ε | S | [P ] jsr~x [Q] | if B then SI else SI | SI ;SI
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A symbolic instruction is a piece of loop-free sequential code where all procedure
calls have been instantiated to jsr instructions of the form [P ] jsr~x [Q]. This form
plays a central role in Smallfoot. We use it not only to handle procedure calls,
but also for concurrency and for entry to and exit from a critical region.

Semantically, [P ] jsr~x [Q] is a “generic command” in the sense of [38]. It is
the greatest relation satisfying the pre- and post-condition, and subject to the
constraint that only the variables in ~x are modified. An adaptation of generic
commands which requires the relation to agree on local and pull out/slot in
interpretations of triples, can be found in [33].

Overall, what the execution mechanism does for [P ]SI [Q] is start with P and
run over statements in SI generating postconditions. For each postcondition P ′

thus obtained, it checks an entailment P ′ ` Q using a terminating proof theory.
We will not give a detailed description of the symbolic execution mechanism,

referring to [5] for the details. (We remark that the presentation there does not
include conditional assertions if B then P else Q, but these are easily dealt with.)
Instead, we will describe how the mechanism works in a particular case, in the
else branch of the disp_tree program.

When we take that branch we have to establish a triple

[p 6=nil ∧ tree(p)]C [emp]

where C is the command in the else branch, with procedure calls instantiated
to jsr instructions. Applying the tree unroll rule yields

[p 6=nil ∧ (p 7→l: i′, r: j′) ∗ tree(i′) ∗ tree(j′)]C [emp]

for fresh variables i′ and j′. After the first two assignment statements in C we
are left with:

[p 6=nil ∧ (p 7→l: i, r: j) ∗ tree(i) ∗ tree(j)]
([tree(i)] jsr [emp]) ;([tree(j)] jsr [emp]) ; dispose(p) [emp]

To apply [tree(i)] jsr [emp] we have to find a frame axiom, using the frame rule
from earlier, and it is just (p 7→l: i, r: j) ∗ tree(j). Similarly, in the next step we
obtain p 7→l: i, r: j as the frame axiom, and finally we dispose p. (Frame infer-
ence is not always so easy; for example, ccr examples later require a certain
amount of logical reasoning beyond pattern matching.) This leaves us with an
easy entailment:

p 6=nil ∧ emp ` emp

4.2 VCGen

For each procedure declaration f(~p ;~v)[P ]C [Q] we generate a set of verification
conditions vcg(f, [P ]C [Q]). The formal definition can be found in [4], and here
we illustrate how it applies to the par_disp_tree and heaplet transfer examples
presented in Sections 2.2 and 2.3.
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Recall the specification of par_disp_tree: [tree(p)] par_disp_tree(p) [emp]. So
for a call par_disp_tree(i), vcg considers a single generic command:

[tree(i)] jsr [emp]

which indicates that the net effect of calling par_disp_tree on i is to con-
sume a tree starting from i, produce no heap, and modify no (nonlocal) vari-
ables in the process. Using this straight-line command, and the similar one for
the call par_disp_tree(j), the net effect of the recursive parallel function calls
par_disp_tree(i) ‖ par_disp_tree(j) is to consume trees starting at i and j,
produce no heap, and modify no variables. This is the core of the verification
condition of par_disp_tree, and is expressed by the straight-line command:

[tree(i) ∗ tree(j)] jsr [emp]

With this, the whole body of par_disp_tree is expressed by a conditional com-
mand, and so par_disp_tree’s single vc is obtained by tacking on the pre- and
post-conditions:

[tree(p)]
if p=0 then ε else i := p�l ; j := p�r ;([tree(i) ∗ tree(j)] jsr [emp]) ; dispose(p)
[emp]

This vc is then discharged by symbolic execution, which propagates the precon-
dition forward through the command and then checks (for each branch of the
execution) that the computed postcondition entails the specified one.

For the heaplet transfer example, the init procedure must establish the re-
source invariant from precondition emp, yielding vc:

[emp] jsr [if c=nil then emp else c7→]

For brevity, if we inline put and get in putter and getter:

putter() [emp] {

local x;
x := new();

with buf when(c=nil) {

c := x; }

putter();

} [emp]

getter() [emp] {

local y;
with buf when(c6=nil) {

y := c; c := nil; }

dispose(y);
getter();

} [emp]

The crux of the vcs of these functions is the straight-line command which
expresses the ccr commands. For getter this is:

[emp] jsr [(if c=nil then emp else c7→) ∧ c6=nil] ;
y:= c ; c:= nil
[if c=nil then emp else c7→] jsrc [emp]
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The generic commands for ccr entry and exit act as resource transformers.
Recalling that the resource invariant for buf is (if c=nil then emp else c7→), the
initial generic command expresses that upon entry into the ccr, the guard holds
and resource invariant is made available to the body. Notice how the invariant
is obtained starting from emp as a precondition, “materializing” inside the ccr
as it were. Then the body runs, and the final generic command expresses that
the body must reestablish the resource invariant prior to exiting the ccr.

The ccr in putter works similarly, but illustrates resource transfer on exit:

[emp] jsr [(if c=nil then emp else c7→) ∧ c=nil] ;
c:=x

[if c=nil then emp else c7→] jsrc [emp]

The use of emp in the postcondition, considering that x6=nil since x will have
just been allocated, effectively deletes the invariant c7→ from consideration, and
the cell pointed-to by c will not be accessible to the code following the ccr.

The vcs for putter and getter are then:

[emp]
x:= new();
[emp]

jsr
[(if c=nil then emp else c7→) ∧ c=nil];
c:= x;
[if c=nil then emp else c 7→] jsrc [emp];
[emp] jsr [emp]

[emp]

[emp]
[emp]

jsr
[(if c=nil then emp else c7→) ∧ c6=nil];
y:= c;
c:= nil;
[if c=nil then emp else c7→] jsrc [emp];
dispose(y);
[emp] jsr [emp]

[emp]

Note that, as usual, when verifying a recursive procedure, the procedure’s spec-
ification is assumed. Here, this means that each recursive call is replaced by a
generic command with the procedure’s pre- and post-conditions.

The main command is then a parallel function call:

putter();
∥∥ getter();

which gives the additional verification condition:

[emp] ([emp] jsr [emp]) [emp]

Note that in both of these examples, no analysis of potential interleavings
of the executions of parallel commands is needed. Given the resource invariants,
the concurrent separation logic treatment of ccrs allows us to just verify a few
triples for simple sequential commands.

5 Further Examples

5.1 More on Trees

The specification of disp_tree does not use ∗, even though the proof does. An
example that uses ∗ in its spec is:
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copy_tree(q;p) [tree(p)] {

local i,j,i’, j’;
if (p = nil) { q := p; }

else {

i := p�l; j := p�r;
copy_tree(i’;i); copy_tree(j’;j);
q := new(); q�l := i’; q�r := j’; }

} [tree(q) ∗ tree(p)]

The tree predicate that we use is not sensitive to the contents of the tree, only
the fact that it is a tree. So, if in copy_tree the final two steps were

q�l := j’; q�r := i’;

then we would actually have an algorithm for rotating the tree, though it would
satisfy the same spec. If, on the other hand, we mistakenly point back into the
old tree

q�l := i; q�r := j;

then an error is reported; we do not have separation on termination.
The tree predicate that we have used here is one that satisfies

tree(E)⇐⇒ (E=nil ∧ emp) ∨ (∃x, y. (E 7→l:x, r: y) ∗ tree(x) ∗ tree(y))

where x and y are fresh. The use of the ∗ between E 7→l:x, r: y and the two
subtrees ensures that there are no cycles, the ∗ between the subtrees ensures
that there is no sharing (it is not a dag), and the use of emp in the base case
ensures that there are no cells in a memory satisfying tree(E) other than those
in the tree. The fact that the specification does not mention any data field is
what makes this a shape specification, insensitive to the particular data.

This definition of tree(E) is not something that the user of Smallfoot sees; it
is outside the fragment used by the tool (it has a quantifier). Reasoning inside
the tool essentially uses rolling and unrolling of this definition. For instance, the
proof step where we entered the else branch uses an entailment

p 6=nil ∧ tree(p) ` ∃x, y. (p 7→l:x, r: y) ∗ tree(x) ∗ tree(y)

together with stripping the existential (generating fresh variables) when the
right-hand side is subsequently used as a precondition.

5.2 Linked Lists

We now give an example, using lists, that cannot be handled using simple
(un)rolling of an inductive definition. We work with linked lists that use field tl
for the next element. The predicate for linked-list segments is the least satisfying
the following specification.

ls(E,F )⇐⇒ (E=F ∧ emp) ∨ (E 6=F ∧ ∃y.E 7→tl: y ∗ ls(y, F ))
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A complete linked list is one that satisfies ls(E,nil).
Consider the following Smallfoot program, where the pre and post use com-

plete lists only, but the loop invariant requires a genuine segment ls(x, t). (One
would use genuine segments in pres and posts for, e.g., queues.):

append_list(x;y) [ls(x, nil) ∗ ls(y, nil)] {

if (x = nil) { x := y; }

else {

t := x; u := t�tl;
while (u 6=nil) [ls(x, t) ∗ t 7→tl: u ∗ ls(u, nil)] {

t := u; u := t�tl; }

t�tl := y; }

} [ls(x, nil)]

The most subtle part of reasoning in this example comes in the last step,
which involves a triple

[ls(x, t) ∗ t 7→tl: nil ∗ ls(y, nil)] t�tl := y; [ls(x, nil)]

We use a symbolic execution axiom

[A ∗ x7→f : y]x�f := z [A ∗ x7→f : z]

to alter the precondition in-place, and then we use the rule of consequence with
the entailment

ls(x, t) ∗ t 7→tl: y ∗ ls(y,nil) ` ls(x, nil)

of the postcondition. This entailment does not itself follow from simple unrolling
of the definition of list segments, but is proven in the proof theory used within
Smallfoot by applying the inductive definition to conclude ls(t, nil) from t 7→tl: y∗
ls(y, nil), and then applying a rule that encodes the axiom

ls(E1, E2) ∗ ls(E2,nil) ` ls(E1,nil)

It is this axiom that does not follow at once from list rolling and unrolling; in
the metatheory it would require a proof by induction.

Generally, for each hardwired inductive predicate Smallfoot uses a collection
of such rules that are consequences of induction, but that can be formulated
in a way that does not require enumeration of inductive hypotheses. The proof
theory we have obtained in this manner is complete as well as terminating for
entailments involving lists and trees [5].

This ability to prove inductive properties is one of the characteristics which
sets this approach apart from Alias Types [39] and its descendants. Alias Types
includes coercions to roll and unroll inductive types, but (as far as we under-
stand) consequences of induction must be witnessed by loops.

A final comment on this example. In the loop invariant we did not include a
∗-conjunct ls(y, nil), which would indicate that the loop preserves the listness of
y. The reason we did not include this is that y’s list is outside the footprint of
the loop; Smallfoot discovers it as a frame axiom.
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5.3 Information Hiding

The following describes a toy memory manager, which maintains binary cons
cells in a free list. When the list is empty, the alloc(x;) operation calls new in
a way similar to how malloc() might call a system routine sbrk() to request
additional memory.

resource mm (f ) [ls(f, nil)]

init() { f := nil; }

alloc(x;) [emp] {

with mm when(true) {

if(f = nil) { x := new(); } else { x := f; f := x�tl; } }

} [x7→]

dealloc(y) [y 7→] { with mm when(true) { y�tl := f; f := y; } } [emp]

The use of ccrs provides mutual exclusion, so that several calls to alloc

or dealloc in different process will not interfere. The real point of the exam-
ple, though, is information hiding. Because of the modularity of the ccr rule,
the interface specifications for alloc and dealloc do not mention the free list
at all. Furthermore, the specification of dealloc forces permission to access a
deallocated cell to be given up, and this is essential to prevent incorrect usage.

For example, the little main program

main() { alloc(z;); dealloc(z); z�tl := z; }

is flagged as an error by Smallfoot, because the precondition to z�tl := z will be
emp; we must know that z points to something to do a dereference, this program
would tie a cycle in the free list.

However, the reason that this program is ruled out is not just because the
invariant it violated, it is because the cell z (now in the free list) cannot be
touched at all after dealloc(z). For example, if we were to replace z�tl := z by
z�tl := nil then the free list would not be corrupted in the global state, but the
example still would not pass Smallfoot; it breaks abstraction by dereferencing a
cross-boundary pointer, into the free list abstraction.

The effect of this information hiding can be seen more strongly by replacing
the occurrences of new and dispose in the pointer-transferring buffer with calls
to the homegrown memory manager.

putter() { alloc(x;); put(x); putter(); }

getter() { get(y;); /* use y */ dealloc(y); getter(); }

If we replace the putter and getter procedures from Section 2.3 with these,
include joint initialization of the two resources

init() { f := nil; c := nil; }

and leave everything else the same, then the code verifies. If we did not use the
ccr rule to hide resource invariants, we would have to “thread” the free list
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through the buffer code, forcing us to alter the specifications of put and get by
including ls(f,nil) in their preconditions and postconditions.

5.4 XOR-deqs

For our final example we consider deqs – double-ended queues – implemented
using an xor-linked list. Recall that an xor-linked list is a compact representation
of doubly-linked lists where, instead of using separate fields to store previous
and next nodes, their bitwise exclusive or is stored in one field [23]. Besides their
entertainment value, using xor lists here demonstrates how Smallfoot does not
depend on reachability. The fact that the separation logic triple [P ]C [Q] asserts
that execution of C in states described by P will not access any other locations
(except possibly locations newly allocated by C) does not depend on whether
other such locations are reachable or not. We will also allow concurrent access
to the deq, though that aspect is of secondary importance for the example.

The following predicate describes xor-linked list segments:

xlseg(E1, F1, E2, F2)
def

iff (E1=F1 ∧ E2=F2 ∧ emp)
∨ (E1 6=F1 ∧ E2 6=F2 ∧ ∃x. (E1 7→l: (E2 xorx)) ∗ xlseg(x, F1, E1, F2))

In reading this definition it helps to think of a picture:

E2

xor

F1F2E1

xorxor

The basic idea is that a resource will own the deq represented as an xor
list, while processes accessing the two ends will hold dummy nodes back and
front which will be used for putting elements in the deq. Operations for getting
from the deq will release nodes into the calling processes. The resource declara-
tion and invariant are as follows; additionally, an initialization is needed (code
omitted) which sets up the pictured postcondition.

resource xdeq(n,p) [front=p ∧ back=n ∧ xlseg(f, n, p, b)]

init() { ... } [(front 7→l: prev xor f) ∗ (back 7→l: next xor b)]

In this invariant it helps to consider the picture above: heaps cells corresponding
to the nodes n and p (and hence front and back) are not held in the deq, but
rather are pointers into the processes that hold them as dummy nodes.

There are four procedures for accessing the deq: in Table 1 we show the code
for putting on the back and getting from the front, and the specifications only
for the other two (their code is similar).

What the getf procedure does is dispose the dummy node front it currently
has, replacing it with the first node f that is in the deq. This is done by an
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Table 1 xor -linked deq accessors

getf(x;) [front 7→l: prev xor f ] {

local t, old f;
t := front�l;
old f := prev xor t;
dispose(front);
prev := front;
/* split new dummy link

off front */

with xdeq when(old f 6=n) {

t := f�l;
f := t xor p;
p := old f;
front := p;

}

x := front�d;
} [front 7→l: prev xor f ]

getb(x;) [back 7→l: next xor b] {

...

} [back 7→l: next xor b]

putb(x) [back 7→l: next xor b] {

local t, new n, old p;
/* allocate new dummy link */

new n := new();

new n�l := next xor back;
/* store datum in previous dummy,

link to new dummy */

back�d := x;
t := back�l;
old b := t xor next;
back�l := new n xor old b;
/* move previous dummy link

into deq */

with xdeq when(p 6=back) {

b := back;
n := new n;
back := n;

}

} [back 7→l: next xor b]

putf(x) [front 7→l: prev xor f ] {

...

} [front 7→l: prev xor f ]

ownership transfer, within a critical region, similar to what was done in the
pointer-transferring buffer in Section 2.3. Note that, although front 7→l: prev xor f
is true at the beginning and end of the procedure, it is false at intermediate
points. Similarly, the putb procedure stores a new item in the d field of its
dummy node back, and then effects an ownership transfer where this node gets
swallowed into the deq data structure. The crucial point is that the accesses
x:= front�d and back�d:=x of the data fields occur outside of critical sections.
It is this that allows these accesses to be done in parallel.

[Aside: There is one limitation of Smallfoot that this example shows: in the
putb procedure we include a test (p 6=back) which happens to be true in any
execution. This condition is an additional annotation that Smallfoot needs to
verify the code. The difficulty is that two processes may be allocating nodes
concurrently, and the allocated nodes will indeed be different, but our current
assertions do not allow us to say so, locally. We say “current” because if we
change the memory model to allow “existence permissions” [7, 8] then it is pos-
sible to do away with the extra annotation in a by-hand proof; we have not,
though, incorporated existence permissions into Smallfoot as of yet.]

To show these procedures working, we set up two parallel processes procf and
procb which nondeterministically choose whether to do a put or get operation on

18



the two ends of the deq. (The nondet keyword was not in the formal grammar
for Smallfoot before, but it is in the tool and is implemented by talking both
branches of a conditional in symbolic execution.)

procf(x) [front 7→l: prev xor f ] {

if(nondet) {

getf(x;); /* use x */ }

else {

/* produce an x */ putf(x); }

procf(x);
} [false]

procb(x) [back 7→l: next xor b] {

if(nondet) {

getb(x;); /* use x */ }

else {

/* produce an x */ putb(x); }

procb(x);
} [false]

main() procf(42) ‖ procb(13);

Smallfoot verifies the resulting program using a terminating proof theory for
facts about xor lists. It involves basic identities for xor, together with adaptations
of the rules in [5] for list segments. Again, this example could not be verified
without consequences of induction that go beyond rolling and unrolling of an
inductive definition, and Smallfoot uses several such for xor lists, akin to the
axiom described in Section 5.2.

This is a variant of classic algorithms which allow concurrent access to two
ends of a queue. As usual, we could allow multiple processes at each end of the
queue by using mutexes to rule out concurrent accesses from the same end.

6 Conclusions and Related Work

Before discussing related work we mention some of Smallfoot’s limitations.
First, even when a program’s preconditions and postconditions can be ex-

pressed using Smallfoot assertions, we will not be able to verify it if its (loop
and resource) invariants cannot be expressed. An example of this is Parkinson
and Bornat’s proof [34] of the non-blocking stack of Michael [26]. (Parkinson has
verified a different non-blocking algorithm which is included amongst the exam-
ples on our web pages, but we are unable to express the invariant for Michael’s
algorithm.)

Incidentally, although Brookes has shown that concurrent separation logic
rules out races [11], this should not be taken to mean that it cannot be used on
programs that are normally considered racy. Generally, one can use little ccrs
to explicitly notate statements that are considered atomic, or one could use some
other notation (e.g., “atomic”) with the same proof methodology, and that is
what Parkinson and Bornat have done in [34].

Second, Smallfoot uses a strict separation model, which does not allow shar-
ing of read access. As a consequence it cannot handle, e.g., a readers and writers
program, which is proven in [8] using a less strict “counting permissions” model
of separation logic. Adding permission accounting is on our to-do list.

Third, it would be straightforward to include inductive definitions, if we
were content to just roll and unroll them. However, then very many interesting
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programs would not verify. Several examples in this paper involving linked lists
required properties to be proven at both ends, and these would not be verifiable
using rolling and unrolling alone. A direction for future research is to find a class
of inductive definitions and to classify consequences of induction that can be
included in a terminating proof theory.

The most closely related works to Smallfoot are the Pointer Assertion Logic
Engine [28] and Alias Types [39] and its relatives (e.g. [13, 9]). PALE is stronger
than Smallfoot in the range of predicates it considers, based on graph types.
The state of development of Smallfoot is more directly comparable to the first
version of PALE [20], which was for linked lists only, and we hope to encom-
passes some graph structures in the future. Conversely, PALE does not check
frame conditions on recursive calls, and this (intentionally) leads to unsound-
ness, whereas the treatment of framing is a focus of Smallfoot. Also, PALE does
not deal with concurrency. Early on in the Smallfoot development we considered
whether we could translate a fragment of separation logic into the fragment of
monadic second-order logic that PALE is based on. For some specific assertions
it is possible but we were unable to find a general scheme. The decidability of
fragments of monadic second-order logic is brittle, and can be broken by adding
features. Most importantly, we were unable to see how to give a compositional
interpretation of ∗.

With regard to Alias Types, there are many similarities. Most importantly,
both approaches use a substructural logic or type theory for heaps. We believe it
is fair to say that the annotation burden in Smallfoot is considerably less than in
Alias Types, owing mainly to inference of frame axioms. Alias Types were aimed
at intermediate languages, so that is not a criticism of them. Another difference
is that Alias Types use a range of inductive predicates, while we only use several
specific predicates. However, our proof theory uses strong and sometimes com-
plete inductive properties, such as are needed when working at both ends of a
linked list.

The shape analysis of Sagiv, Reps and Wilhelm [37] provides a powerful ver-
ification technique for heaps. The biggest problem with the approach is that it
is non-modular, in that an update to a single abstract heap cell can necessitate
changing the whole abstract heap (some steps to build in modularity have been
taken in [36]). We considered whether we could use ideas from shape analy-
sis within a single procedure, and leverage ∗’s modularity for interprocedural
and concurrent analysis. Again, we had great difficulty dealing with ∗ composi-
tionally, and further difficulties with the dispose instruction. But investigations
continue; if this direction worked out it would give us access to a much wider
range of abstractions (using “canonical abstraction” [37]).

We are often asked: why did you not just give a deep (semantic) embedding
of separation logic in a predicate logic, and then use a general theorem prover,
instead of constructing your own proof method? The short answer is that the
deep embedding leads to nested quantifiers in the interpretation of ∗, and this
is an impediment to automation; attempts so far along these lines have proven
to be highly non-automatic. Of course it would be valuable to construct a deep
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embedding and develop a range of tactics and make use of general purpose
provers, but that is for separate work.

Work on ESC and Spec# has resulted in important advances on modular
heap verification [16, 3]. Ideas of ownership and inclusion have been used to
classify objects, and give a way of avoiding frame axioms, intuitively related to
work on ownership types and semantics [12, 1]. Methods based on fixed own-
ership structures have been described (e.g., [25, 14]), but fixed structures are
inflexible, e.g., having difficulty dealing with ownership transfer examples (like
our pointer-transferring buffer or memory manager), except possibly under dra-
conian restrictions (such as unique-pointer restrictions). A recent emphasis has
been on using ownership assertions that refer to auxiliary fields that may be al-
tered, and this leads to added flexibility [2, 24], including transfer. New schemes
are being invented to extend the basic idea, such as a “friends” concept that lets
invariants reach across hierarchical ownership domain [30]. We refer to David
Naumann’s survey paper for a fuller account of and further references to re-
search in this area [29].

In contrast, separation logic does not require a hierarchical ownership struc-
ture to ensure locality or encapsulation. Assertions just describe heaplets, por-
tions of state, and an assertion encapsulates all of the state that a command is
allowed to change. Still, there appear to be some similarities between the owner-
ship assertion approaches and the reasons for why separation logic works mod-
ularly [41, 33]; there seem to be, in particular, remarkably similar intuitions un-
derlying a recent ownership-invariant system for concurrency [19] and concurrent
separation logic [31]. A careful comparison of their models could be worthwhile.

Modular reasoning about concurrent programs has also received much atten-
tion, often based on the fundamental work of Jones, Misra and Chandy [21, 27].
Our remarks at the end of Section 2.2 apply also in any comparison between
Smallfoot and tools based on rely/guarantee (e.g. [15]). Our remarks should not
be taken to be an ultimate argument for separation logic over rely/guarantee,
and it would be interesting to attempt to marry their strong points (easy treat-
ment of independence, powerful treatment of dependence). We should add that
the criticisms we made echo comments made by Jones himself [22].

Smallfoot is written in OCaml, and all of the examples in this paper verified
in a few milliseconds on an ordinary laptop. We have not included a timing
table or other experimental results, because for the small examples we have
considered the interpretation of such results would be questionable, except that
if the verifications had taken minutes or hours and not milliseconds then that
would have been a negative indication. The source code for the current version of
Smallfoot (v0.1), together with the examples from this paper and several others,
is available for download from the address given in reference [4].
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