
To appear in: CAV 2006. 1

Automatic termination proofs for programs with
shape-shifting heaps

Josh Berdine1, Byron Cook1, Dino Distefano2, and Peter W. O’Hearn1,2

1 Microsoft Research
2 Queen Mary, University of London

Abstract. We describe a new program termination analysis designed to
handle imperative programs whose termination depends on the mutation
of the program’s heap. We first describe how an abstract interpretation
can be used to construct a finite number of relations which, if each is
well-founded, implies termination. We then give an abstract interpreta-
tion based on separation logic formulæ which tracks the depths of pieces
of heaps. Finally, we combine these two techniques to produce an au-
tomatic termination prover. We show that the analysis is able to prove
the termination of loops extracted from Windows device drivers that
could not be proved terminating before by other means; we also discuss
a previously unknown bug found with the analysis.

1 Introduction

Consider the code fragment in Fig. 1, which comes from the source code of a
Windows device driver. Does this loop guarantee termination? It’s supposed to:
failure of this loop to terminate would have catastrophic effects on the stability
and responsiveness of the computer. Why would it be a problem if this loop didn’t
terminate? First of all, the device that this code is managing would cease to
function. Secondly, due to the fact that this code executes at kernel-level priority,
non-termination would cause it to starve other threads running on the system.
Note that we cannot simply kill the thread, as it can be holding kernel locks and
modifying kernel-level data-structures—forcibly killing the thread would leave
the operating system in an inconsistent state. Furthermore, if the loop hangs,
the machine might not actually crash.3 Instead, the thread will likely just hang
until the user resets the machine. This means that the bug cannot be diagnosed
using post-crash analysis tools.

This example highlights the importance of termination in systems level code:
in order to improve the responsiveness and stability of the operating system it
is vital that we can automatically check the termination of loops like this one.
In this case, in order to prove the termination of the loop, we need to show the
following conditions:

1. DeviceExtension->ReadQueue.Flink is a pointer to a circular list of ele-
ments (via the Flink field).

3 Although hanging kernel-threads can trigger other bugs within the operating system.

for (entry = DeviceExtension->ReadQueue.Flink;

entry != &DeviceExtension->ReadQueue;

entry = entry->Flink) {

irp = (IRP *)((CHAR *)(entry)-(ULONG *)(&((IRP *)0)->Tail.Overlay.ListEntry));

stack = IoGetCurrentIrpStackLocation (irp);

if (stack->FileObject == FileObject) {

RemoveEntryList(entry);

if (IoSetCancelRoutine (irp, NULL)) {

return irp;

} else {

InitializeListHead (&irp->Tail.Overlay.ListEntry);

}

}

}

Fig. 1. Code from a Windows device driver which contains a termination bug found
by the analysis described in this paper. The bug has catastrophic effects on the respon-
siveness of the computer when it occurs.

2. During the execution of this loop, entry is always getting closer to taking
the value of &DeviceExtension->ReadQueue.

3. The loop will terminate when entry is finally assigned the value equaling
&DeviceExtension->ReadQueue.

4. The assignments to other parts of the heap occurring during the loop’s ex-
ecution (e.g., the side-effects from executing InitializeListHead) do not
affect conditions 1, 2, and 3.

Unfortunately, there is a termination bug in Fig. 1: in some cases this loop may
violate condition 4.

To date, automatically checking the termination of loops like this one has
been beyond any known tool. This is because the termination argument is based
on the semantics of imperative heap-mutation during the loop’s execution. To-
day’s termination analysis tools (that is: tools that both find and check termina-
tion arguments automatically) simply do not support an analysis at this level of
depth; instead they only support arguments involving the values of arithmetic
variables. Examples of such tools include Terminator [5] and PolyRank [2].

In this paper, we present a new termination prover which supports loops of
this sort. In cases where loops have termination bugs the prover is able to pro-
vide information which can be used to automatically find a counterexample. The
prover implements an abstract analysis, based on formulæ expressed in separa-
tion logic, which keeps track of the relative differences between heap objects while
abstracting away the exact details. This analysis produces a finite collection of
depth relations such that the program is well-founded if each individual relation
is. The correctness of the termination argument relies on a result of Podelski
& Rybalchenko [12]. The candidate depth relations constructed are checked for
well-foundedness with the use of projection and the RankFinder tool [11].

Separation logic [14] is used as the basis of our analysis because it lets us sym-
bolically carry around just enough information to prove that loops are making

2

Mutant (P, I, `) {
Y := Sonar∗

P [{I}]
if > ∈ Y return “Loop may crash”, with >
foreach y ∈ Y such that pc(y) = ` {

s := Seed(y)
Z := Sonar+

P [{s}]
foreach z ∈ Z such that pc(z) = ` {

if ¬WF(z) return “Loop may diverge”, with (y, z)
}

}
return “Loop `-terminates”

}
Fig. 2. Mutant algorithm.

progress while abstracting enough information such that the tool produces a com-
pact over-approximation of the reachable states. Furthermore, separation logic
mitigates the need for a global alias check when size information is changed: the
alteration of the size of one piece of the heap does not affect any others that are
held in different components of a separating conjunction. These characteristics
are what make the new termination proof method powerful, yet still tractable.

This paper begins with a description of the algorithm, followed by the details
of the separation logic analysis, and then experimental results. Our experiments
include loops extracted from Windows device drivers that could not be handled
using Terminator [5] due to its overly-coarse model of heaps [13].

2 Termination via separation analysis and rank synthesis

Our termination checking algorithm, Mutant, is displayed in Fig. 2. The input
is a program P , an abstract initial state expressed as a separation logic formula I,
and a program location `. The algorithm is designed to prove that the program
P cannot visit location ` infinitely-often during its execution when started in
states satisfying I. We call this condition `-termination. If we wish to prove that
P terminates, we can prove `-termination for each program location. We can also
optimize by focusing only on a subset of the locations (i.e., a set of cutpoints [9]).

Mutant first calls an analysis engine, Sonar (defined in Section 3), to
calculate the finite set of reachable abstract states Y . For a program P , SonarP

is the binary transition relation on abstract states, and Sonar∗
P denotes its

reflexive transitive closure. Sonar∗
P [{I}] denotes the post-image under the pre-

state I. During this analysis Sonar also proves that P cannot commit any of
a basic set of safety violations, such as an access to a deallocated heap object.
If Sonar returns >, then it cannot guarantee that P is safe from this class of
errors—and our method cannot prove termination.

Next, for each reachable symbolic state y at program location `, the algorithm
constructs a new state with additional history variables that symbolically record
a snapshot of the depths of pieces of y’s heap. We call this step seeding, and use
the notation Seed(y) to represent the output of this operation. If s = Seed(y)

3

then, when symbolically executing instructions starting from s, we can see how
the effects of these operations relate to the original values from y.

Mutant then calls Sonar again to compute the states reachable from
Seed(y) in at least one step and which are at the same program location (i.e.,
pc(y) = pc(z) = `). Each of the pairs (y, z) in the abstract semantics determines
an over-approximation of transitions in the concrete semantics of the program,
and together they over-approximate all transitions in the concrete semantics.

The Sonar analysis uses heap predicates together with certain auxiliary
variables that describe heap depths. For example lsk(a, b) describes a linked list
of length k running from a to b. Seeding maps this formula to ks=k ∧ lsk(a, b),
where ks is a symbolic constant used to record the initial value of k. Running
Sonar starting from this state can change k but not ks. So, if the final state is
ks>k ∧ lsk(a, b) then this indicates that the linked list has decreased in length
(as can happen, e.g., by removing an element from the list).

Because we seed y before running Sonar again to obtain z, the single abstract
state z will actually contain information, in the form of an assertion, which relates
initial (seeded) values of heap-depth variables to their final values (for this run
of Sonar). In the above example it is just ks>k. The WF(z) procedure extracts
this information from z and treats it as a binary relation Ti, which relates the
relative differences between the depths of pieces of heaps referenced by z. WF(z)
then calls the RankFinder tool [11] to determine if this relation is well-founded.
Note that the well-foundedness of each z is checked independently of the others.

In essence, Mutant constructs a finite set T1, . . . , Tn of binary relations,
whose union over-approximates changes to the auxiliary variables that track
heap depths. If one of the determined relations Ti is not well-founded, then
Mutant’s attempted proof of `-termination fails. However, if all of the found
pairs denote well-founded relations, then `-termination has been proved. The
correctness of this assertion comes from [12], which shows that: to establish that
` is not visited infinitely often, it is sufficient to find a finite union of well-founded
relations that over-approximates the transitions through location `.

The algorithm is different from the one in the Terminator tool [5]. As de-
scribed in [3], Terminator uses counterexample-guided abstraction refinement
to add disjuncts to a collection T1, . . . , Tn of well-founded relations, and then
uses a binary reachability analysis [4] to check the subset inclusion. Checking
the inclusion is the expensive part of Terminator. In contrast, here we never
do the inclusion check. Rather, Sonar produces a finite set of Ti’s (determined
by the (y, z) pairs), which together satisfy the inclusion by construction. As with
Terminator, we still have to check for well-foundedness of each Ti.

3 Tracking depths of abstracted heaps

Sonar implements an analysis that is sound for safety properties of programs.
It uses an abstract domain based on separation logic forumlæ, and as a result,
is set up to express deep properties (meaning properties that depend on areas of
the heap not immediately referenced by program variables) of mutating heaps.

4

Reachability between program states is computed using a fixed-point algorithm
built from single-step symbolic execution (notationally: ;) together with a case
analysis or concretion step (→E) which incrementally reveals the pointer struc-
ture of abstracted or summarized heap objects, and an abstraction step (→)
which enables convergence to fixed-points.

Sonar is based on SpaceInvaDer [7]. The difference between the two analy-
sis engines is in Sonar’s tracking of depths of inductive heap predicates. Depth
does not necessarily refer to lengths of pointer chains in the heap, but instead
refers to the number of inductive unfoldings a formula represents. For lists, this
corresponds to length. In this section we describe the underlying fundamentals
behind Sonar. We focus on linked lists in the exposition, but the method of
proving `-termination generalizes to data structures expressed using other in-
ductive predicates in separation logic, such as trees, doubly-linked lists, etc.

Programs. Sonar supports a simple language of goto programs extended with
the usual four heap operations: allocate, deallocate, load, and store. A program
P is a function mapping a fixed finite subset of naturals {0, . . . , end − 1} to
commands C, given by:

E ::= nil | x | x′ expressions
S ::= skip | x:=E | x:= new() safe commands

A(E) ::= dispose(E) | x:= [E] | [E]:=E heap accessing commands
B ::= E=E simple Boolean formulæ
G ::= B | ¬B branch tests
C ::= S | A(E) | goton | if(G) {goton} else {goton}

where n ∈ {0, . . . , end}; and variables x, y, . . . range over some infinite set Var;
and primed variables x′, y′, . . . range over some disjoint infinite set Var′. Primed
variables cannot appear in programs. They are included in expressions since these
also appear in formulæ (below). For convenience of later definitions, commands
S are syntactically distinguished from commands A(E). The difference between
the two is that for a command S, execution is always safe, while execution of a
command A(E) may be unsafe, due to access of heap location E.

Symbolic Heaps and Depths. Sonar operates over an abstract domain that
represents sets of concrete program states as sets of separation logic formulæ
called symbolic heaps. Note the inclusion of depth formulæ K, and depth variable
annotations N on list segment predicates lsN (E,E):

N ::= 1 | k | k′ Π ::= true | B | K | Π ∧Π

K ::= N=N | N>N Σ ::= emp | H | Σ ∗Σ | junk

H ::= E 7→E | lsN (E,E) Q ::= Π ∧ Σ

Depth variables k, l, . . . , k′, l′, . . . and primed depth variables k′, l′, . . . range over
DVar and DVar′, respectively, and denote natural numbers. DVar is infinite and

5

disjoint from Var and Var′, while DVar′ is an infinite subset of DVar. Note that
formulæ are considered up to symmetry of =, permutations across ∧ and ∗ (e.g.,
Π ∧ B0 ∧ B1 and Π ∧ B1 ∧ B0 are equated), unit laws for true and emp, and
idempotency of − ∗ junk (e.g., junk ∗ junk and junk are equated).

Symbolic heap formulæ consist of two parts: a Boolean formula Π built
from =, >, and ∧ which is independent of the heap and has the usual classical
arithmetic meaning; and a heap formula Σ which expresses heap shape. The
meaning of a symbolic heap Q is the same as ∃~x′, ~k′. Q in the usual semantics
of separation logic [14], where we existentially quantify all the primed variables.
The empty heap, which contains no allocated cells at all, is described by emp.
A heap consisting of a single cell at location E with contents F is described
by E 7→F . The separating conjunction ∗ describes composition of disjoint heaps:
heaps with shape Σ0 ∗ Σ1 consist of two subheaps with no allocated locations
in common, one with shape Σ0 and the other with shape Σ1. Non-empty heaps,
usually consisting of unreachable cells, are described by junk. Finally, lsN (E,F)
describes acyclic singly-linked lists of length N ≥ 1. Cyclic lists, such as that
in the introductory example, can be expressed using multiple predicates: e.g.,
lsk(x, y′) ∗ lsj(y′, x). Note that the ls1 and 7→ predicates are not equivalent, since
x7→x admits cycles (of length one), while ls1(x, x) is inconsistent.

The definition of the abstract transition relation asks several types of ques-
tions about symbolic heaps: entailment of an equality (Q ` E=F), entailment
of a disequality (Q ` E 6=F), or inconsistency (Q ` false). We also sometimes ask
the negations of these questions. Sound implementations of these queries can be
obtained from those defined in [7].

Symbolic Execution (;). The symbolic execution relation captures the effect
of executing a straight-line command from a symbolic heap. That is, Q0

C; Q1

means that Q1 over-approximates the concrete states which can result from
executing C from states satisfying Q0. We do not show the axioms which define
symbolic execution of basic commands S and A(E) as they are reported in [1, 7],
but for illustration we show the axiom for loading the contents of a memory
address E into x:

Q ∗ E 7→F
x:=[E]

; x=F [x′/x] ∧ (Q ∗ E 7→F)[x′/x] (1)

where x′ is globally fresh. This axiom says that if we load the contents of E
into x in a state which looks like Q with a separate single heap cell at location
E with contents F , then the resulting state will look the same except that now
x will have the value of the contents of E in the pre-state, F [x′/x]. As usual
[9], we think of x′ as standing for the value of x that was overwritten, and the
renaming is necessary to account for the changing value of x.

Rearrangement (→E). Symbolic execution does not operate on arbitrary pre-
states. For instance, the axiom for load (1) requires that the source heap cell
be explicitly known. In order to put symbolic heaps into the form required for
symbolic execution of a command, we use a rearrangement relation →E , defined
by the following axioms:

6

SubstE

z′=E ∧Q → Q[E/z′]

SubstN

l′=N ∧Q → Q[N/l′]

JunkGT

k′>N ∧Q → Q

JunkLT

N>k′ ∧Q → Q

Transitivity

N>k′ ∧ k′>N ′ ∧Q → N>N ′ ∧Q

Junk

Q ∗H(x′, E) → Q ∗ junk

JunkCycle

Q ∗H0(x
′, y′) ∗H1(y

′, x′) → Q ∗ junk

AppendLsNil

Q ∗H0(E, x′) ∗H1(x
′, F) → Q ∗ lsk′′

(E, nil)
Q ` F=nil

AppendLsGuard

Q ∗H0(E, x′) ∗H1(x
′, F0) ∗H2(F1, G) → Q ∗ lsk′′

(E, F0) ∗H2(F1, G)
Q ` F0=F1

Here formulæ H(E, F) are of form E 7→F or lsN (E, F); and k′, x′, y′ do not occur other
than where explicitly indicated; and k′′ is fresh.

Fig. 3. Abstraction relation (→).

Q ∗ F 7→G →E Q ∗ E 7→G if Q ` E=F Switch

Q ∗ ls1(F,G) →E Q ∗ E 7→G if Q ` E=F SwitchLs

Q ∗ lsk(F,G) →E k′>k ∧ k′=1 ∧Q[k′/k] ∗ E 7→G if Q ` E=F Unroll1

Q ∗ lsk(F,G) →E k′>k ∧Q[k′/k] ∗ E 7→x′ ∗ lsk(x′, G) if Q ` E=F Unroll>1

where k′ and x′ are globally fresh. Note that these axioms are directed toward
a heap location of interest E, increasing the determinacy of symbolic execution.

Rearrangement reveals the pointer structure of heaps which are abstracted or
summarized (by an ls predicate). This is achieved by performing case analysis: a
symbolic heap rewrites to a set of symbolic heaps, each of which, modulo renam-
ing k, is logically stronger (represents fewer concrete states). Given that we are
proving `-termination, it is also crucial for rearrangement to track the changing
depths of list segment predicates. This is captured by the k′>k in the right-hand
side of Unroll>1, which indicates that the length of the list starting from x′ in
the post-state is less than that of the list starting from x in the pre-state.

Abstraction for fixed-point computations (→). Abstraction is accomplished by
certain separation logic implications that rewrite a symbolic heap to a logically
weaker one. The abstraction relation on symbolic heaps Q0 → Q1 is defined by
the axioms shown in Fig. 3.

As opposed to rearrangement above, which takes lists apart and strengthens
the individual symbolic heap formulæ in a symbolic state, abstraction constructs
larger lists, weakening the symbolic heap formulæ. This step is very coarse for
depth information since, in the examples we have investigated, increasing list
lengths are not generally a progress measure for `-termination—instead it is
decreasing list lengths, captured by the rearrangement relation, which furnish
progress measures for `-termination.

7

Crash

Q
P (n)
; >

〈n , Q〉 ;P >

Heap Access

Q0 →E Q2 Q2
A(E)
; Q3 Q3 →∗ Q1

〈n , Q0〉 ;P 〈n + 1 , Q1〉
P (n) ≡ A(E)

Safe

Q0
S; Q2 Q2 →∗ Q1

〈n , Q0〉 ;P 〈n + 1 , Q1〉
P (n) ≡ S

Goto

〈n , Q〉 ;P 〈m , Q〉
P (n) ≡ gotom

If False

〈n , Q〉 ;P 〈m , E=F ∧Q〉
P (n) ≡ if(E 6=F) {goto l} else {gotom}
and Q 0 E 6=F

Fig. 4. Transition relation (;P).

The Transition Relation (;P). In the Mutant algorithm, for a program P ,
SonarP = ;P . The transition relation ;P relates configurations consisting
of a program location and a symbolic heap to another program location and a
symbolic heap or crash (notationally >): 〈n , Q0〉 ;P 〈m , Q1〉 or 〈n , Q0〉 ;P

> where m ≤ end and n ≤ end − 1 are values of the program counter. The
program stops when execution reaches end either by falling through an S or
A(E) instruction, or by a goto. That is, configurations 〈end , Q0〉 are stuck.

The rules shown in Fig. 4 define the transition relation in terms of the sym-
bolic execution relation ;, the rearrangement relation →E , and the reflexive
transitive closure of the abstraction relation →∗. We have shown only one of the
four axioms for conditional branches; the others can be defined similarly from [7].

The key rule is Heap Access, which says that when the current instruction
will attempt to access a heap cell E, the symbolic state Q0 is first rearranged to
reveal the heap cell at E, yielding state Q2, from which the current instruction
is executed, yielding state Q3, which is then abstracted, yielding the final state
Q1. The definition allows for flexibility regarding the amount of abstraction that
is performed, and how often. By default, Sonar fully abstracts at each step, but
when this strategy loses too much precision to prove memory safety, we abstract
fully only at the program point ` in question.

The first call Y := Sonar∗
P [{I}] of the analysis in the Mutant algorithm re-

quires that the transition relation ;P (i.e., SonarP) be an over-approximation
of the concrete semantics in the usual sense: that it over-approximates reacha-
bility. If σ1 is a concrete state that is reachable from an initial state σ0 satisfying
initial symbolic heap I, then there is a reachable symbolic heap Q that is sat-
isfied by σ1. The concrete semantics does not operate on depth variables, and
the relevant notion of satisfaction involves existentially quantifying all of the
depth variables in Q. This sense of over-approximation follows essentially from
the soundness result of [7].

The second call to Sonar in the algorithm requires a different notion of
over-approximation for transitions, which we discuss in Section 4.

A small example. To see how this analysis tracks the progress of heap updates for
`-termination proofs we consider advancing a pointer to a list to the next node.
The initial state is=i∧js=j∧ lsj(y, x)∗ lsi(x, nil) indicates that the heap shape is

8

an acyclic singly-linked list of length j+i starting from pointer y and ending with
nil. The pointer x splits this list into two sublists of length j and i. Consider
the program fragment: n: x = x->next;. In Mutant’s input format this is
represented by a program P where P (n) = x:= [x]. For this example, ;P cont-
ains two transitions, one for the case where the sublist lsi(x, nil) is of length 1:

〈n , is=i ∧ js=j ∧ lsj(y, x) ∗ lsi(x, nil)〉 (2)

;P 〈n + 1 , x=nil ∧ is>i ∧ is=1 ∧ js=j ∧ lsk′′
(y, nil)〉

and one for the case where lsi(x, nil) is of length greater than 1:

〈n , is=i ∧ js=j ∧ lsj(y, x) ∗ lsi(x, nil)〉 (3)

;P 〈n + 1 , is>i ∧ js=j ∧ lsk′′
(y, x) ∗ lsi(x, nil)〉

Here, we have seeded the initial state with is=i and js=j to keep track of the
initial depths is and js so that we can observe that is>i. This indicates that
the sublist lsi(x, nil) in the post-state is shorter than that in the pre-state. It is
inequalities like this which are the reason for well-foundedness of the computed
transition relations.

In the derivations of the transitions (2) and (3), first the state is=i∧ js=j ∧
lsj(y, x) ∗ lsi(x, nil) is rewritten to two intermediate states by the application of
the rearrangement axioms Unroll1 and Unroll>1, respectively:

is=i ∧ js=j ∧ lsj(y, x) ∗ lsi(x, nil) (4)
→x is=i′ ∧ i′>i ∧ i′=1 ∧ js=j ∧ lsj(y, x) ∗ x7→nil

is=i ∧ js=j ∧ lsj(y, x) ∗ lsi(x, nil) (5)
→x is=i′ ∧ i′>i ∧ js=j ∧ lsj(y, x) ∗ x7→x′ ∗ lsi(x′, nil)

Now, in both of the resulting states, the heap cell at x is explicit, therefore the
symbolic execution rules can be applied to the right-hand side of (4) and (5):

is=i′ ∧ i′>i ∧ i′=1 ∧ js=j ∧ lsj(y, x) ∗ x7→nil

x:=[x]
; x=nil ∧ is=i′ ∧ i′>i ∧ i′=1 ∧ js=j ∧ lsj(y, x′) ∗ x′ 7→nil

is=i′ ∧ i′>i ∧ js=j ∧ lsj(y, x) ∗ x7→x′ ∗ lsi(x′, nil)
x:=[x]

; x=x′ ∧ is=i′ ∧ i′>i ∧ js=j ∧ lsj(y, x′′) ∗ x′′ 7→x′ ∗ lsi(x′, nil)

Finally, the resulting states are abstracted by →. For the first state, we apply
the SubstN and AppendLsNil rules to abstract as much as possible, and for the
second state we apply SubstN, SubstE, and AppendLsGuard, yielding:

x=nil ∧ is=i′ ∧ i′>i ∧ i′=1 ∧ js=j ∧ lsj(y, x′) ∗ x′ 7→nil (6)

→∗ x=nil ∧ is>i ∧ is=1 ∧ js=j ∧ lsk′′
(y, nil)

x=x′ ∧ is=i′ ∧ i′>i ∧ js=j ∧ lsj(y, x′′) ∗ x′′ 7→x′ ∗ lsi(x′, nil) (7)

→∗ is>i ∧ js=j ∧ lsk′′
(y, x) ∗ lsi(x, nil)

The right-hand sides of (6) and (7) are the resulting states of (2) and (3).

9

4 Checking well-foundedness of the over-approximation

Now that the abstract transition relation has been described, the remaining
ingredients of the `-termination proof method of Fig. 2 are Seed and WF.

Considering Fig. 2, we know that y is an element of Y (i.e., of Sonar∗
P [{I}]).

Seed(y) computes s, which is a new state in which the values of all the depth
variables occurring in y are symbolically recorded:

Seed(Q) , (
∧

k∈fdv(Q) ks=k) ∧Q

where fdv(Q) denotes the (unprimed or primed) depth variables in Q. Each ks

is a fresh symbolic constant (i.e., uninterpreted nullary function symbol), which
we formally represent as an unprimed variable. Now assume, as is done in Fig. 2,
that z ∈ Sonar+

P [{s}].
The procedure WF(z) is used to try to prove that z represents a well-founded

binary relation. Formally, this procedure proves well-foundedness of the relation
that represents an over-approximation (determined by (y, z)) of all concrete ex-
ecutions that visit y and then visit z.

WF implements this procedure by first computing a representative set of
arithmetic inequalities. Due to seeding and the fact that symbolic execution
maintains the relationship between the seeded information and the updated in-
formation, the arithmetic component of the relation (y, z) represents an over-
approximation of the changes in depths due to executing from y to z, and exists
entirely in the symbolic state z. Hence we can extract them via a projection α(z):

α(true ∧ Σ) , true α(K ∧ Σ) , K

α(B ∧ Σ) , true α(Π0 ∧Π1 ∧ Σ) , α(Π0 ∧ Σ) ∧ α(Π1 ∧ Σ)

The formula resulting from this projection is interpreted as a binary relation
over the naturals from the seed variables to the other variables. As an exam-
ple, consider this abstraction applied to the post-state of the transition of the
previous section (3): α(is>i ∧ js=j ∧ lsk′′

(y, x) ∗ lsi(x, nil)) = is>i ∧ js=j. We
now take this as one of the disjuncts in the transition invariant from Section 2,
Tn = is>i∧ js=j, which clearly represents a well-founded relation from is, js to
i, j, over the naturals.

After projecting out the inequalities, WF calls the RankFinder tool [11] to
attempt to prove well-foundedness:

WF(z) { return (RankFinder(αk(z)) reports “Rank function found”) }

Checking well-foundedness relies on a second notion of over-approximation
that is relevant to the second call Z := Sonar+

P [{s}] of the depth analysis in
the Mutant algorithm. The formulation and proof of this second sense of over-
approximation is non-trivial, and for space reasons we can only give an outline of
it here. It involves setting up an instrumented semantics which manipulates the
depth variables k; the reason for the additional semantics is that the standard
concrete semantics of heap mutation does not mention the auxiliary depth vari-
ables used in our analysis. The instrumented semantics mixes both concrete and

10

C program program in Sonar format

1 void main()

2 {

3 y = x;

4 while (x!=NULL) {

5 x = x->next

6 }

7 }

P (3) = y:= x
P (4) = if(x6=nil) {goto 5} else {goto 7}
P (5) = x:= [x]
P (6) = goto 4

Fig. 5. Simple example program: list traversal

abstract semantics. For example, an assignment statement [x]:= y alters concrete
heap cell x, but can also bump a depth variable down by one, corresponding to
an application of the Unroll>1 rearrangement rule. The crucial point is that
the rearrangement rules (→E) are sound for the updates of depth variables in
the instrumented semantics. Overall, what we require, first, is that if the projec-
tion α(Q) denotes a well-founded relation, then that implies well-foundedness of
executions in the instrumented semantics starting from seeded states; in essence,
α constrains the changes to depth variables. Then, the soundness of Mutant
requires a simulation argument connecting the instrumented semantics with a
standard concrete semantics of heap mutation.

5 A complete example

To illustrate the analysis in action, we consider trying to prove `-termination
of the simple program in Fig. 5, where ` is location 5, and the initial state is
lsk(x, nil). As in Fig. 2, the first step of Mutant(P, I, 5) is to compute Sonar∗

P [I].
First Sonar computes the transition relation:

〈3 , lsk(x, nil)〉 ;∗
P 〈5 , y=x ∧ lsk(x, nil)〉

〈5 , y=x ∧ lsk(x, nil)〉 ;+
P 〈5 , y 7→x ∗ lsk(x, nil)〉

〈5 , y 7→x ∗ lsk(x, nil)〉 ;+
P 〈5 , lsk′

(y, x) ∗ lsk(x, nil)〉

〈5 , lsk′
(y, x) ∗ lsk(x, nil)〉 ;+

P 〈5 , lsk′
(y, x) ∗ lsk(x, nil)〉

We show only those transitions in ;+
P involving program location 5, since the

algorithm will consider only those states. In this case:

Y = {〈5 , y=x ∧ lsk(x, nil)〉, 〈5 , y 7→x ∗ lsk(x, nil)〉, 〈5 , lsk′
(y, x) ∗ lsk(x, nil)〉} ∪ Y ′

where Y ′ contains the states not at program location 5. Note that > /∈ Y ,
meaning that executing P from I is guaranteed to be safe with respect to the
basic set of (memory) safety properties we consider.

Of the three reachable states in Y , we need only to consider q = 〈5, lsk′
(y, x)∗

lsk(x, nil)〉 since execution from the other two states will result either in the state
〈5 , lsk′

(y, x)∗ lsk(x, nil)〉 itself or in the loop exiting. The next step in Fig. 2 is to

11

Loop 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Time (s) 0.0 0.0 8.0 0.3 1.7 13 296 0.1 5.4 0.0 8.2 821 0.0 1.6 152 0.0 2.6 3.5 58 32 261

Result X � X X X X X � � X X X X X X X � X � X X

WF checks 1 4 16 3 5 9 15 2 4 1 6 39 1 3 16 1 28 9 85 20 37

Fig. 6. Results of experiments using Mutant on loops from extracted from Windows
device drivers falsely reported as non-terminating by Terminator (see [4]). The sym-
bol X indicates that Mutant was able to prove the loop `-terminating; The symbol �
means that a termination bug was found.

seed q, which yields: s = 〈5,k′s=k′∧ks=k ∧ lsk′
(y, x)∗ lsk(x, nil)〉. The variables k

and k′ are set equal to the fresh constants ks and k′s. Later, during the successive
call to Sonar, we will be able to see how the values of k and k′ change relative
to k′s and ks.

The next step is to compute (SonarP)+[{s}], which equals:

〈5 , k′s=k′ ∧ ks=k ∧ lsk′
(y, x) ∗ lsk(x, nil)〉 ;+

P 〈5 , ks>k ∧ lsk′
(y, x) ∗ lsk(x, nil)〉

〈5 , ks>k ∧ lsk′
(y, x) ∗ lsk(x, nil)〉 ;+

P 〈5 , ks>k ∧ lsk′
(y, x) ∗ lsk(x, nil)〉

From this we see that the set of states at program location 5 reachable from
s after executing the loop one or more times is Z = {〈5 , ks>k ∧ lsk′

(y, x) ∗
lsk(x, nil)〉}. Let r be the element in Z from Fig. 2: r = 〈5 , ks>k ∧ lsk′

(y, x) ∗
lsk(x, nil)〉. All that remains is to prove WF(r), which we do by calculating:
αk(r) = ks>k and then calling RankFinder(ks>k). In this case RankFinder
reports that the relation is well-founded.

6 Experimental results

In the experimental results described in [4], Terminator [5] was used to try
to prove that Windows device driver dispatch routines always return to their
calling context. A number of false bugs were reported in those experiments due
to Terminator’s inaccuracy with respect to heaps. In this section we revisit
21 loops from [4] in which `-termination was not provable. Fig. 6 displays the
results of these experiments (which were run on a 3.6GHz Pentium 4 machine).
The symbol X is used to indicate the 16 cases in which Mutant was able to
prove `-termination. The symbol � is used to represent failed proof attempts.
The number of disjuncts in the transition invariant, described in Section 2, is
reported in the bottom row.

Each failed well-foundedness check leads directly to a counterexample in the
code (the production of counterexamples could be automated but isn’t in the
current setup). Note that for now we have to extract each loop from a Windows
device driver loop by hand: Mutant currently does not support C functions and
address-of (&) operator on stack variables, so some manual translation akin to a
compiler front-end was required to construct equivalent programs. Furthermore,
loop preconditions were inserted by hand. These preconditions could probably
be automatically computed via the analysis like the one described in [7].

12

Example 19 is the code from Fig. 1. As we see from Fig. 6, this loop has a ter-
mination bug. The problem is that InitializeListHead creates a self-loop from
&irp->Tail.Overlay.ListEntry.Flink to &irp->Tail.Overlay.ListEntry
and that irp->Tail.Overlay.ListEntry.Flink aliases entry, meaning that
after the call to InitializeListHead, entry equals entry->Flink. Example
18 is based on fixed code provided to us from the Windows kernel team after
we reported the bug. These experiments reveal a strong difference in Mutant’s
running time between analyzing terminating versus non-terminating loops.

Example 8 is the only false bug reported by Mutant: the loop actually does
`-terminate, but our analysis is unable to prove it. This example amounts to
reversing a panhandle list. The initial state describes such lists, which cycle back
to a list node other than the head node, with the formula: lsi(c, x′) ∗ lsj(x′, y′) ∗
lsk(y′, x′). The program is essentially a common in-place list reversal algorithm.
When the program is run starting from a panhandle list, first the handle is
reversed in the usual way, then the cycle is reversed, and finally the handle is
reversed once again. Notice, in particular, that the handle is walked twice, and
so the quantity which is decreasing with each loop iteration is 2i + j + k, which
our analysis does not detect. Finally, note that Mutant correctly proves the
termination of list reversal when starting either with an acyclic or cyclic list.

7 Conclusion

In this paper we have introduced a novel method of automatically proving the
termination of loops whose correctness depends on the mutation of the heap.
As the experimental results demonstrate, Mutant is able to prove the termi-
nation of loops that Terminator was previously unable to handle. Mutant
is completely automatic (e.g., it does not require the user to provide ranking
functions). Mutant provides information which may lead to concrete coun-
terexamples when a termination proof fails.

Related work. Our work differs from the previous research on termination proof
methods in that we have proposed the first known tool to support entirely au-
tomatic termination proofs of imperative programs with deep heap updates. To
the best of our knowledge, the experimental results in Section 6 represent the
first known successful application of this type of tool to industrial systems with
loops that imperatively construct or destruct heap-based data structures. Note
that absolutely no user intervention is required (i.e., ranking functions or proof
hints). Yahav’s dissertation [15] discusses experiments in which imperative list-
processing loops are proved terminating (the programs come from [8]). This work
is less automatic than Mutant: for the reason that the user must first exam-
ine the loop and specify a single (possibly lexicographically ordered) ranking
function. Mutant/Terminator automatically proves all of the examples from
[8] in less than 10s total. Note that 6.5s of this 10s was spent solving the one
arithmetic (non-heap) example using the standard Terminator algorithm.

Mutant also uses the relatively new Terminator proof-rule (finding a
disjunctively well-founded over-approximation), which was originally proposed

13

in [12]. While this use is not an original contribution, it means that the flavor of
the analysis is different from previous approaches (such as [16], [10] or [6]).

Our algorithm works in reverse order with respect to Terminator’s original
method for arithmetic programs. Terminator iteratively refines the set of well-
founded relations based on false counterexamples to the termination property.
The relations are well-founded by construction, the difficultly is proving that they
over-approximate the meaning of the loop or recursive function. Mutant first
computes an over-approximation and proves that it is disjunctively well-founded.
The over-approximation is given, the question is are the disjuncts well-founded?

Acknowledgments

We are grateful to Andreas Podelski, Andrey Rybalchenko, Moshe Vardi, Tal
Lev-Ami, Roman Manevich, Noam Rinetzky, Mooly Sagiv, Eran Yahav, and
Greta Yorsh for discussions, and the anonymous referees for helpful comments.
Distefano and O’Hearn acknowledge support from the EPSRC.

References

[1] J. Berdine, C. Calcagno, and P. O’Hearn. Symbolic execution with separation
logic. In APLAS, 2005.

[2] A. Bradley, Z. Manna, and H. Sipma. Termination of polynomial programs. In
VMCAI, 2005.

[3] B. Cook, A. Podelski, and A. Rybalchenko. Abstraction refinement for termina-
tion. In SAS, 2005.

[4] B. Cook, A. Podelski, and A. Rybalchenko. Termination proofs for systems code.
In PLDI, 2006.

[5] B. Cook, A. Podelski, and A. Rybalchenko. Terminator: Beyond safety. In CAV,
2006.

[6] D. Distefano, J.-P. Katoen, and A. Rensink. Who is pointing when to whom? on
the automated verification of linked list structures. In FSTTCS, 2004.

[7] D. Distefano, P. W. O’Hearn, and H. Yang. A local shape analysis based on
separation logic. In TACAS, 2006.

[8] N. Dor, M. Rodeh, and S. Sagiv. Checking cleanness in linked lists. In SAS, 2000.
[9] R. W. Floyd. Assigning meanings to programs. In Proceedings of Symposia in

Applied Mathematics, 1967.
[10] C. S. Lee, N. D. Jones, and A. M. Ben-Amram. The size-change principle for

program termination. In POPL, 2001.
[11] A. Podelski and A. Rybalchenko. A complete method for the synthesis of linear

ranking functions. In VMCAI, 2004.
[12] A. Podelski and A. Rybalchenko. Transition invariants. In LICS, 2004.
[13] A. Podelski and A. Rybalchenko. Transition predicate abstraction and fair ter-

mination. In POPL, 2005.
[14] J. Reynolds. Separation logic: A logic for shared mutable data structures. In

LICS, 2002.
[15] E. Yahav. Property-Guided Verification of Concurrent Heap-Manipulating Pro-

grams. PhD thesis, 2004.
[16] E. Yahav, T. Reps, M. Sagiv, and R. Wilhelm. Verifying temporal heap properties

specified via evolution logic. In ESOP, 2003.

14

