
MFPS 2006

Strong Update, Disposal, and Encapsulation
in Bunched Typing

Josh Berdine

Microsoft Research 1

Peter W. O’Hearn

Queen Mary, University of London

Abstract

We present a bunched intermediate language for strong (type-changing) update and
disposal of first-order references. In contrast to other substructural type systems,
the additive constructs of bunched types allow the encapsulation of state that is
shared by a collection of procedures.

Key words: bunched typing, separation logic, strong update,
disposal, encapsulation, continuation-passing style

1 Introduction

Substructural type systems give a way to control the usage of resources in
programs. The first example of such resource control was given by syntac-
tic control of interference (sci) [17], which used an affine type system (one
that prohibits Contraction but not Weakening) to control aliasing of first-
order references. This fed into the development of bunched typing and logic
[13,15,12], in which substructural features live on the same footing as intu-
itionistic typing. The sense of “same footing” is summed up succinctly in the
category-theoretic models of bunched typing: a model is a doubly cartesian
closed category, i.e., a single category that admits both cartesian closed and
symmetric monoidal closed structures. The full intuitionistic connectives of
bunched typing were used to define an extended version of sci that dealt with
problems in the original version to do with recursion and continuations [12].

In a parallel line of development, type systems inspired by linear logic [7]
were given that allowed for destructive update and safe disposal of memory in

1 Work performed while supported by the EPSRC at Queen Mary, University of London
This paper is electronically published in

Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

Berdine and O’Hearn

a purely functional setting [23,24,25]. These languages in turn influenced im-
perative typed intermediate languages, that allow for safe disposal and strong
update, where the type of a reference is allowed to change over time [10,26,4].

This paper was partly inspired by recent work reported in [9], which pre-
sented some of the ideas from typed intermediate languages in a pleasantly
pared-down form, and which took some steps towards bunched logic or type
theory by defining a kind of spatial possible worlds model. (Those new to
the topic, in particular, are encouraged to read [9].) This helped us to bet-
ter understand some of the issues involved, to put our finger on some of the
differences, and now to take some steps of our own in the reverse direction
(from bunched type theory towards typed intermediate languages). We re-
fer to [9] for further discussion of how linear typing supports strong update
and disposal, and their use in intermediate languages, and to [25,1] for gen-
eral background on substructural type systems and references to the further
literature.

The essential point is that these parallel lines of development have been
applied in different ways. In the line with sci and bunched typing, alias-
ing is controlled, and full-strength additive connectives are allowed. But the
languages studied do not allow strong update or disposal. In the linear typ-
ing line, strong update and disposal are allowed, but additive connectives, in
particular the additive product & of linear logic, are not.

A natural question, then, is whether bunched typing can also incorporate
safe disposal and strong update. The answer is not immediate, because of
examples from [12] which show that a number-of-uses reading, which provides
the intuitive rationale for why strong update and disposal are sound in linear
typing, is incompatible with bunched typing. A second question is whether
any advantages are obtained by allowing the use of additives as in bunched
typing. The purpose of this paper is to investigate these questions.

We present a language based on bunched types that indeed does support
disposal and strong update. The language is presented in cps (continuation-
passing style) form. The type of the disposal operation is:

freeψ : a → (ψ ref −−∗ a)

Here, a is the type of answers, → is the intuitionistic function type, and the
multiplicative type ψ ref −−∗ a is given a spatial reading: if you give me a refer-
ence occupying separate storage from what I have, I can produce an answer.
The reading of freeψ is that if you give me a continuation that references cer-
tain storage, and then a reference in completely separate storage, I can dispose
the reference and then safely run the continuation. Notice that this reading
says nothing about number of uses; safety of disposal stems from intuitions
about separation (mirroring separation logic [16] and alias types [26]).

The answer type a here denotes command continuations in the sense of
Reynolds [18]: a command continuation accepts a state and then runs. A
conventional command is an additive function of type a → a. We also have

2

Berdine and O’Hearn

the possibility of using “multiplicative commands” of type a −−∗ a.
Because our language is in cps, it should be regarded as (the bones of) an

intermediate language rather than a source language. Indeed, it is nontrivial
to define a direct-style language that supports disposal. The reason can be
seen in terms of two expected additive typing rules:

Γ `M : σ Γ ` N : τ
Γ ` (M,N) : σ × τ

Γ `M : σ → τ Γ ` N : σ
Γ `M N : τ

If we think in terms of call-by-value evaluation, if M and N both dispose a
common reference before producing a value, then (M,N) will lead to an error
where the same reference is disposed twice. Similar remarks apply to M N .

A possible way out of this problem would be to use a form of Hoare typing,
that is, a type system that has both preconditions and postconditions. A
lower-tech way out is to use cps. For example, a cps typing rule

∆ ` K : a

Γ `M ;K : a

can be thought of as typing M relative to pre- and post-conditions Γ and
∆. The pre/post analogy can be seen clearly in some typed intermediate
languages, such as [21].

An eventual aim is to obtain a direct-style source language with all of
bunched types that supports update and disposal. However, a prior question
is whether bunched types can express these features at all. It is more sensible,
scientifically, as a first step to investigate this question in terms of an existing
type system, that of [15,12], rather than an hypothesized, not-yet-existing,
system of higher-order pre/post typing using bunches. The formulation of
such a system is a topic for future research, as is connections with separation
logic (as might be hoped for given the connection between separation logic
and bunched logic [8]).

Given that we have the full additives of bunched typing, the next question
is whether this gives any added flexibility. In sum, we are able to transfer to a
language with disposal and strong update a feature emphasized by Reynolds
in his work on sci: encapsulation of state that is shared by a collection of
procedures.

The basic idea can be explained via an example of a procedure for gener-
ating counter objects. The methods have type µ = ((int → a) → a) ∧ (a →
a)∧ (a −−∗ a), an additive product of the type for a method to get the value of
a counter, to increment, and to destroy it when done. The first two methods
use the additive function type. They preserve the type and shape of the back-
ground heap and can be used one after the other. The destroy method is a
multiplicative command, where the input continuation operates on a smaller
heap than the command. The multiplicative command cannot be postcom-
posed with either of the other two methods, because there would not be a
match-up of heap shape (semantically) or context (type theoretically). The

3

Berdine and O’Hearn

type of a client for such an object is (µ −−∗ a) → a, where the −−∗ captures that
the client is unaware of the state shared by the methods. In Section 3 we will
derive a term (which presently is unlikely to make sense)

true ` λk. new λ∗x. x:≡ 0 $λ∗x. k (mb) : (µ −−∗ a) → a

for generating counters, where mb is code for the method bodies.

As far as we are aware, this encapsulation behavior cannot be represented
using monomorphic fragments of linearly-typed languages as in [23,25], be-
cause there a value of additive type A → B cannot contain any identifier
denoting a linear object. And the reference is the quintessential linear object.
Consequently, it is not possible to construct a collection of additive functions
that share access to hidden state.

Before continuing we should say that the remarks we have made in this
section should not be construed as ultimate arguments in favor of bunched
typing. For instance, shared state can be represented by adding type quan-
tification to a linear language. This is why we have included the qualification
“monomorphic”. Our remarks are intended just to pinpoint what some of the
differences are when compared to previous work, and we do this simply to
add information to the picture of substructural typing rather than to argue
for ultimate advantage. Also, our toy language is purposely pared-down in
order to let us investigate the problems tackled in this paper with a mini-
mum of distraction. For this reason we do not include higher-order references
or polymorphism, even though these would be necessary to have an expres-
sive intermediate language as in, e.g., [10]; this is a direction for future work
[6], and [5] gives a semantics of the language presented here extended with
polymorphic location and region types.

2 Type System

We specialize the monomorphic bunched type theory of [15] by specifying
several base types and constants. (We omit the coproduct types as they
will not be required, though they are present in the model to be presented
later.) The base types are the type int of integers, a primitive type a to use
as the answer type in continuation-passing style, and primitive types ψ ref
of references containing values of storable types, which are either int or true.
We consider these as the two storable types just to allow us to investigate
changing types (strong update).

The types and contexts of the system are given by the grammar:

φ, ψ ::= int | true storable types
ϕ, σ, τ ::= a | ψ | τ ∧ τ | τ → τ | emp | ψ ref | τ ∗ τ | τ −−∗ τ types

Σ,∆,Γ ::= x: τ | true | Γ ; Γ | emp | Γ , Γ bunches

where x ranges over some set of identifiers.

The “;” bunch-combining operation is additive, and will satisfy Contrac-
tion and Weakening, while “,” is the multiplicative form which will satisfy

4

Berdine and O’Hearn

Table 1 Typing Rules

Identifiers and Constants

x: τ ` x : τ
S(c) = τ

true ` c : τ

Structural Rules

Γ `M : τ
∆ `M : τ

Γ ≡ ∆
Γ(∆) `M : τ

Γ(∆ ; ∆′) `M : τ
Γ(∆ ; ∆′) `M : τ

Γ(∆) `M [i(∆)/i(∆′)] : τ
∆ ∼= ∆′

Additives

true ` true : true

Γ(true) `M : τ ∆ ` N : true

Γ(∆) ` let true = N in M : τ

Γ `M : σ ∆ ` N : τ
Γ ; ∆ ` (M ;N) : σ ∧ τ

Γ(x:σ ; y: τ) `M : ϕ ∆ ` N : σ ∧ τ
Γ(∆) ` let (x:σ ; y: τ) = N in M : ϕ

Γ ; x:σ `M : τ
Γ ` λx:σ.M : σ → τ

Γ `M : σ → τ ∆ ` N : σ
Γ ; ∆ `M N : τ

Multiplicatives

emp ` emp : emp

Γ(emp) `M : τ ∆ ` N : emp

Γ(∆) ` let emp = N in M : τ

Γ `M : σ ∆ ` N : τ
Γ ,∆ ` (M , N) : σ ∗ τ

Γ(x:σ , y: τ) `M : ϕ ∆ ` N : σ ∗ τ
Γ(∆) ` let (x:σ , y: τ) = N in M : ϕ

Γ , x:σ `M : τ
Γ ` λ∗x:σ.M : σ −−∗ τ

Γ `M : σ −−∗ τ ∆ ` N : σ
Γ ,∆ `M N : τ

neither. Each has its own unit. The notation Γ(∆) indicates that bunch ∆
appears as a sub-bunch of Γ. We use ≡ to denote the smallest congruence
relation on bunches satisfying commutative monoid laws for “;” and true and,
separately, for “,” and emp. Γ ∼= ∆ indicates that Γ and ∆ are isomorphic
as trees; i.e., one can be obtained from the other by a suitable renaming of
identifiers. The set of identifiers appearing in a bunch is notated i(Γ). The
typing rules are shown in Table 1, where S is an as-yet-unspecified association
of constants to types. The last two structural rules are the bunched versions
of Weakening and Contraction, while the first encompasses Exchange by its
reference to the coherent equivalence (which is commutative).

The terms of the language are shown in the conclusions of the typing
rules, and the constants (we are now specifying S) are the following:

z : int ∀z ∈ Z

5

Berdine and O’Hearn

+ : int ∧ int → int

swapψ,φ : (ψ ∧ φ ref −−∗ a) → (ψ ref ∧ φ −−∗ a)
new : (true ref −−∗ a) → a

freeψ : a → (ψ ref −−∗ a)
!ψ : (ψ → a) → (ψ ref ∗ true → a)

:=ψ : a → ((ψ ref ∗ true) ∧ ψ → a)
frameϕ : (a → a) → ((ϕ −−∗ a) → (ϕ −−∗ a))

hoistσ,ψ,τ : (σ ∗ (ψ ∧ τ)) → ((σ ∧ ψ) ∗ τ)

We use continuation-transformer types (e.g., of form (σ → a) → (τ → a)),
as opposed to continuation-second types (e.g., of form τ → (σ → a) → a),
because, despite some syntactic complications (e.g., the $ syntax later), we
find them easier to understand, following a rough analogy between M : (σ −−∗
a) → (τ −−∗ a) and the Hoare triple {τ} M {σ}.

The constant swap exchanges the type held within the reference and the
one without (following [9]). We then have constants for allocation and deal-
location. Next, there are operations for lookup and weak (type-preserving)
update, which are more additive in character. Then there is a constant for
adding invariants following the Frame rule of separation logic.

The role of the last constant is to teach the type system that storable types
ψ are pure, meaning that they are insensitive to the heap, and hence can be
moved in and out of ∧ and ∗. In separation logic such facts are gotten via
logical implications which stem from the fact that the two conjunctions, ∧
and ∗, coincide for pure types. For the type theory, we will exhibit a model
where Jσ ∗ (ψ ∧ τ)K = J(σ ∧ ψ) ∗ τK, so hoist is the identity function.

We could include a constant for recursion, with the usual type, without
difficulty; it would just require us to use domains in place of sets in the model
defined later. The next sections include examples and intuitive explanation of
how these constants work.

Notation

We have played a little game in the term-forming rules for the multiplica-
tive and additive products, using “,” and “;” in the notation for pairs. This
allows us to introduce some syntactic sugar to alleviate the inconvenience of
the distinction between bunches (contexts) and types, which does not appear
in the semantics. First, we write Γ for the “type of” Γ, that is, Γ without any
identifiers, and with “,” replaced by ∗ and “;” by ∧. Similarly, we write Γ for
Γ without any types. Then, for any Γ, we obtain:

Γ ` Γ : Γ

Additionally, we will destruct arbitrary bunches using let Σ = N in M . When
this syntactic sugar is defined by induction on Σ, we obtain admissibility (the
case when Σ has form x:σ is Cut) of the first rule in Table 2. Also, we
introduce the obvious syntactic sugar for abstracting and then destructing

6

Berdine and O’Hearn

Table 2 Admissible and Derivable Typing Rules

Γ(Σ) `M : τ ∆ ` N : Σ
Γ(∆) ` let Σ = N in M : τ

Γ ; ∆ `M : τ

Γ ` λ∆.M : ∆ → τ

Γ ,∆ `M : τ

Γ ` λ∗∆.M : ∆ −−∗ τ

Γ `M : ψ ref ∧ φ ∆ ` K : ψ ∧ φ ref −−∗ a

Γ ,∆ ` swap M $K : a

Γ `M : ψ ref ∆ ` K : ψ ∧ ψ ref −−∗ a

Γ ,∆ ` !!ψ M $K : a

Γ ` K : true ref −−∗ a

Γ ` new K : a

Γ `M : ψ ref Γ ` N : φ ∆ ` K : φ ref −−∗ a

Γ ,∆ `M :≡ψ,φN $K
def= :≡ψ,φK (M ;N) : a

Γ `M : ψ ref ∆ ` K : a

Γ ,∆ ` freeψ M $K : a

Γ `M : ψ ref (Γ ,∆) ; Σ ` K : ψ → a

(Γ ,∆) ; Σ ` !ψM $K
def= !ψK (M , true) : a

Γ `M : ψ ref (Γ ,∆) ; Σ ` N : ψ (Γ ,∆) ; Σ ` K : a

(Γ ,∆) ; Σ `M :=ψ,φN $K
def= :=ψ,φK ((M , true) ;N) : a

Γ ` C : a → a Γ ` K : ϕ −−∗ a ∆ ` F : ϕ

Γ ,∆ ` frameϕC K F : a

Γ((∆ ; x:ψ) , Σ) `M : τ

Γ(∆ , (x:ψ ; Σ)) ` hoistM
def= let (∆ ; x:ψ) , Σ = hoist ∆ , (x:ψ ; Σ) in M : τ

arbitrary bunches, yielding admissibility of the second and third rules.

In examples we write M N $K for (M K) N and M N $K for (M K)N
in order to write programs from beginning to end. In particular, note that

$ binds tighter than application. For convenience, Table 2 contains derived
typing rules for the constants (where we introduce syntactic sugar in some
conclusions).

Before proceeding, we illustrate the system with a few introductory exam-
ples:

Double-dispose
To illustrate that the explicit deallocation is safe, we begin with the most

basic ill-typed term, an attempt to double-dispose:

x: true ref ` x: true ref

?

emp ` x : true ref k: a ` k : a

k: a ` free x $ k : a

k: a , x: true ref ` free x $ free x $ k : a

k: a ` new λ∗x. free x $ free x $ k : a

7

Berdine and O’Hearn

We indicate that this is underivable with a ‘?’ premiss.

Strong Update and Lookup
Defining a multiplicative form of lookup, !!ψ: (ψ∧ψ ref −−∗ a) → (ψ ref −−∗ a),

and strong update, :≡ψ,φ : (φ ref −−∗ a) → (ψ ref ∧ φ −−∗ a), (note the type
change) in terms of swap and hoist provides an example of strong update:
when called on integer references, two type-changing assignments are made to
the argument.

!!ψ : (ψ ∧ ψ ref −−∗ a) → (ψ ref −−∗ a)
def= λk. λ∗x.

swap (x ; true) $λ∗(v ; x).hoist (
swap (x ; v) $λ∗(u ; x).hoist

k (v ; x))

:≡ψ,φ : (φ ref −−∗ a) → (ψ ref ∧ φ −−∗ a)
def= λk. λ∗xv.

swap xv $λ∗(i ; x).
k x

We will use these operations in examples, and Table 2 includes derived typing
rules for them. The lookup operation accepts a continuation, k, and reference,
x, separate from k and returns the contents of x and x itself to k. Strong
update is essentially just the swap operation except that :≡ does not return
the overwritten value.

The interesting part of the derivation of !!

(k ; v:ψ) , (v′:ψ ; x: true ref) ` swap (x ; v′) $λ∗(u ; x).hoist k (v ; x) : a

k , (v:ψ ; v′:ψ ; x: true ref) ` hoist (swap (x ; v′) $λ∗(u ; x).hoist k (v ; x)) : a

k , (v:ψ ; x: true ref) ` hoist (swap (x ; v′) $λ∗(u ; x).hoist k (v ; x))[v/v′] : a

illustrates the combination of Contraction (copying v to v′) and use of hoist
to rearrange the bunch which allows v to be used both in the argument and
continuation of the first call to swap.

3 Encapsulation

We now present a series of examples pertaining to update and encapsulation.

Keeping Internal Resource Usage Internal
As a warm-up to show how the internal resource usage of a command does

not flood the types of the rest of a program, consider composing new and
free:

x: true ref ` x : true ref k: a ` k : a

k: a , x: true ref ` free x $ k : a

true ` λk.newλ∗x. free x $ k : a → a

Since we have a command of type a → a in the additive empty context, the
internal resource usage has no manifestation in the type. The denotation of

8

Berdine and O’Hearn

this command is the cps identity function, meaning that subsequent alloca-
tions are free to choose the same location which was allocated and deallocated
here.

State-Passing without Encapsulation
We can model commands that do change the state by using reference-

expecting continuations, where the use of−−∗ in the continuation type prohibits
aliasing. Here is an example that simply increments an integer reference:

x: int ref ` x : int ref

...
v ; x ` x : int ref

...
v ; x ` v+1 : int k: int ref −−∗ a ` k : int ref −−∗ a

k: int ref −−∗ a , (v: int ; x: int ref) ` x:≡ v+1$ k : a

k: int ref −−∗ a ` λ∗(v ; x). x:≡ v+1$ k : int ∧ int ref −−∗ a

k: int ref −−∗ a , x: int ref ` !! x $λ∗(v ; x). x:≡ v+1$ k : a

x: int ref ` λ∗k. !! x $λ∗(v ; x). x:≡ v+1$ k : (int ref −−∗ a) −−∗ a

This example lives within the common fragment of linear logic and bi, and is
of the sort which systems built on linear logic, such as [20,9], handle well.

This example shows update at work, but does not provide any encapsu-
lation. Instead of the type used in this example, we would like to have an
increment command which did not have to pass the reference to its contin-
uation, so that it satisfies the judgment x: int ref ` inc : a → a. We use an
additive arrow here, intuitively, since the computation represented by the con-
tinuation should also have access to the reference, for instance, to inc it again.
We are relying on the sharing interpretation of bi’s additives [12]. That is,
the additive arrow in a → a must mean that the function (command) and its
argument (continuation) share the same resources, since the intent is for both
to access the int ref. A model that underpins this intuition, for the current
language, will be given in Section 5.

Object Generation
Using the additive weak update and lookup operations, the increment op-

eration on an integer reference sought above can be given by:

x: int ref ` x : int ref

x: int ref ` x : int ref

...
(emp , x) ; k ; v ` v+1 : int

...
(emp , x) ; k ; v ` k : a

(emp , x: int ref) ; k: a ; v: int ` x:= v+1$ k : a

x: int ref ; k: a ; v: int ` x:= v+1$ k : a

x: int ref ; k: a ` !x $λv. x:= v+1$ k : a → a

x: int ref ` inc def= λk. !x $λv. x:= v+1$ k : a → a

(Note that we elide some types which already appeared lower in the deriva-
tion.) The essential point here is just that we are able to have a reference

9

Berdine and O’Hearn

free in a term of additive function type. That way, the reference can change,
without it being mentioned in the overall type of the term. However, what
we must not do is change the type of the behind-the-scenes reference, for, if
we are not revealing the reference type in the interface (the a → a) like we do
in state-passing then the type change will not be tracked. For this example,
note how k: a ; v: int is preserved across the call to :=, even though it is not
separate from x: int ref, on which := operates. The rule for :≡ does not admit
a similar preservation of additively combined parts of the context (as it must
not).

An operation to return the value of a reference x: int ref ` get : (int → a) →
a is straightforward. Finally, we also define a destructor:

x: int ref ` x : int ref k: a ` k : a

x: int ref , k: a ` free x $ k : a

x: int ref ` free def= λ∗k. free x $ k : a −−∗ a

Just like the inc and get code, this has an integer reference inside it. But its
type uses −−∗ rather than →; in bunched typing neither of these is more spe-
cial than the other when it comes to the kinds of identifiers that can be free.
However, because we have a multiplicative command here, the continuation
operates on a smaller heap than the command itself. Here the difference is
x: int ref, and so the continuation will not have access to x. With a multiplica-
tive command we have the opportunity to dispose of a free reference, while in
an additive command we cannot.

The essential difference between additive and multiplicative commands is
that the former are sequentially composable; e.g.

twice : (a → a) → (a → a) = λc. λk. c (c k)

while the latter are not, since the following does not typecheck:

twice∗ : (a −−∗ a) → (a −−∗ a) = λc. λ∗k. c (c k)

Multiplicative commands are useful for deallocating shared resources, but they
cannot be postcomposed with other commands that use that same resource.

Using these three operations, we can define an object constructor, where
µ = ((int → a) → a) ∧ (a → a) ∧ (a −−∗ a) is the type of the methods, by:

x: true ref ` x : true ref

...
x ` 0 : int

k:µ −−∗ a ` k : µ −−∗ a

...
x: int ref ` (get ; inc ; free) : µ

k , x: int ref ` k (get ; inc ; free) : a

k ` λ∗x. k (get ; inc ; free) : int ref −−∗ a

k , x: true ref ` x:≡ 0 $λ∗x. k (get ; inc ; free) : a

true ` new counter def= λk.new λ∗x. x:≡ 0 $λ∗x. k (get ; inc ; free) : (µ −−∗ a) → a

We remind the reader that the semicolon is used for tuple-formation for addi-
tive products (enabling the game mentioned at the end of Section 2), and

10

Berdine and O’Hearn

not for sequential composition. Note the similarity between the types of
new counter and new : they have the same form, but new passes a reference
cell to its client continuation while new counter passes a tuple of commands.

A key point here is the type of the methods, which is an additive conjunc-
tion. This means that all the methods can share the integer reference between
them. However, despite this degree of sharing, notice that x and k are “,” sep-
arated in the typing context, meaning that the continuation k cannot access
the integer reference x. And this is essential, because if we were to dispose x
using free, and then k accessed x, unsoundness would result.

For comparison, discussions with Ahmed indicate that the nonrecursive,
monomorphic fragments of systems based on linear logic such as [2] admit
typing tuples of functions sharing some resources like that above, but without
the free method. Also, the pair of inc and free could be constructed, but its
type would not allow several calls to inc followed by one to free.

4 Framing

In program logic, frame axioms describe invariants for portions of state not
altered by a computation [11]. A similar issue arises in resource typing, and
this section investigates degrees of framing supported by the language.

Framing Multiplicative Commands (for free)
For multiplicative commands, such as freeK of type true ref −−∗ a, framing

is simple. Consider:

x: true ref ` x : true ref

y: true ref ` y : true ref Γ ` K : a

Γ , y: true ref ` freeK y : a

Γ , x: true ref , y: true ref ` free (freeK y) x : a

Γ ` new λ∗x.new λ∗y. free (freeK y) x : a

For the call free (freeK y) x the context consists of Γ , x: true ref , y: true ref,
while the command operates only on x: true ref, which makes the rest of the
context, Γ,y: true ref, a frame axiom. As demonstrated by the derivation above,
the form of the multiplicative application rule allows such frame axioms to just
be sent to the command’s branch of the derivation, giving us framing for free.

Frame-Threading
For additive commands things are not so easy: consider calling the methods

of a counter with λk. new counter λ∗(g ; i ; f). i (i (f k)). To typecheck this,
we need to derive:

?

k: a , Γ ` i : a → a · · ·

k: a , Γ ` i (i (f k)) : a

11

Berdine and O’Hearn

where Γ = g: (int → a) → a ; i: a → a ; f : a −−∗ a. But the given premiss is
untypable since “,” does not admit Weakening. In actuality, the calls to i i f
will not interfere with k, so what we need is a way to keep k off to one side
while calling the methods, and then pass it to f at the end.

One way to accomplish this would be to give inc type (a−−∗ a)→ (a−−∗
a), which could thread a continuation of type a (a frame axiom) through
the computation. This would be complex and roundabout. Furthermore,
when explicitly threading frames, typing examples where a function is called
with frames of different types at different call-sites would potentially require
giving each function as many types as there are call-sites. This would be very
unfortunate.

Alias types use frame-threading, but lighten the burden using store poly-
morphism [26]. Thielecke [22] takes this frame-threading approach, but he
avoids the complication by using polymorphic answer types and eliding term
annotations for typing rules involving −−∗.

The frame constant addresses these issues by allowing invariants to be
added to (additive) commands directly, remaining in a monomorphic lan-
guage, following separation logic’s Frame rule.

Framing Additive Commands (using frame)
Using frame, the continuation can be held aside while calling the methods:

k: a ` k : a

...
Γ ` framea i : (a −−∗ a) → (a −−∗ a)

...
Γ ` f : a −−∗ a

Γ ` framea i f : a −−∗ a

Γ ` framea i (framea i f) : a −−∗ a

k: a , Γ ` framea i (framea i f) k : a

true ` λk.new counter λ∗(g ; i ; f). framea i (framea i f) k : a → a

This example illustrates how the role of frame is to enable a version of se-
quential composition of (additive) commands in which the separate part of
the context which a command does not need to run (in this case k: a) is
passed unchanged through to the subsequent command.

This derivation also demonstrates the utility of a tree-structured context,
that is, bunches. The bunched structure of the context k: a , (g: (int → a) →
a ; i: a → a ; f : a −−∗ a) expresses that the methods can all share access to a
common reference, while the continuation is prohibited from sharing it.

The semantic difference between these approaches to framing is that with
frame-threading, what is basically happening is that by giving commands store
polymorphic or parameterized types, the fact that the command will not inter-
fere with the parameter is being built-in manually. The frame constant, on the
other hand, reveals that the meanings of commands are already guaranteed
not to interfere with any possible separate parameter.

12

Berdine and O’Hearn

Recap

To summarize what the preceding examples have shown: utilizing only
the multiplicative types and operations together with state-passing does not
allow encapsulation of state, but the additive types and operations do allow
expression of encapsulation. However, while framing was easy with only multi-
plicatives, the additives are more difficult. Frame-threading is one approach,
but it suffers from some unnecessary complexities. Another approach is to
draw inspiration from separation logic’s Frame rule and capitalize on the con-
crete model to introduce the frame constant. (Here we have included only
first-order framing, higher-order frame rules [14,3] could also be investigated.)

5 Model

Following [12], we describe a spatial possible worlds model. A world is a
partial function which assigns a type to each allocated location. When such a
function is undefined we regard the location as not being allocated. The set
of values and partial commutative monoid of possible worlds are defined by

Val def= {true} ∪ Z and Wld def= (Loc fin
⇀ ψ,∅,−∗−)

where w∗w′ takes the union of partial functions with disjoint domain, being
undefined when the domains of w and w′ overlap. We write w ⊥ w′ to mean
that w∗w′ is defined. Here, Loc

fin
⇀ ψ denotes the set of all finite functions

from locations to syntactic types, ∅ ∈ Loc
fin
⇀ ψ, and −∗− is a partial binary

operation on Loc
fin
⇀ ψ.

Storable types ψ denote sets of values, V(ψ):

V(true) def= {true} V(int) def= Z

For each world w ∈ Wld,

H(w)
def
=

∏
`∈dom(w)

V(w(`))

is the set of heaps compatible with w.
Types denote functions that map individual worlds to sets of values, so that

JτKw is a set for each world w ∈ Loc
fin
⇀ ψ: a type denotes a world-indexed

tuple of sets.

JaKw def= H(w) ⇒ 2
JψKw def= V(ψ)

JempKw def=

 {emp} if w = ∅

∅ otherwise

Jψ refKw def=

 {`} if w = {[`:ψ]}

∅ otherwise

Jσ ∧ τKw def= (JσKw)× (JτKw)
Jσ ∗ τKw def=

∑
(w′,w′′)|w=w′∗w′′

(JσKw′)× (JτKw′′)
Jσ → τKw def= (JσKw) ⇒ (JτKw)
Jσ −−∗ τKw def=

∏
w′⊥w(JσKw′) ⇒ (JτKw∗w′)

13

Berdine and O’Hearn

The set theoretic function space is denoted ⇒, and 2 is the two-point set.

The meaning of the answer type JaKw in a particular world consists of
functions which accept heaps for that world and return an answer. They
are the command continuations. The meanings of storable types are world-
independent, which is to say that they are constant tuples. The interpretation
of the reference type is noteworthy: it is nonempty only when the world w
is a singleton. This is related to the “exact” points-to relation in separation
logic, which denotes a single cell and nothing else.

The other connectives from bunched type theory are given their standard
interpretations. The additive product ∧ allows pairs of values that live at
the same world, while the multiplicative ∗ takes pairs from separate worlds.
The effect of this can be seen in Jint ref ∧ int refKw and Jint ref ∗ int refKw. In
the former the world w can only be a singleton if the denotation is to be
nonempty, and so the two elements of the tuple must be one and the same. In
the latter w must have size precisely two, and different references are sent to
each side of ∗. The semantics of the additive function type → requires that
it takes arguments at a given world to results at that same world, while the
multiplicative type asks for arguments from a separate, or fresh, world.

A constant c of type τ is interpreted by specifying, for each w, an element

JcKw ∈ JτKw
That is, a constant is a type-correct, world-indexed family of elements. In the
following we recall the type of each constant before giving its denotation.

swapψ,φ : (ψ ∧ φ ref −−∗ a) → (ψ ref ∧ φ −−∗ a)

Jswapψ,φKw def= λk
Q

w′
l
⊥wJψ∧φ refKw′l⇒JaKw∗w′l .Πwl⊥w. λ(lJψ refKwl , vJφK). λhw∗wl .

k [l:φ] (h(l), l) [h | l: v]

new : (true ref −−∗ a) → a

JnewKw def= λk
Q

wl⊥wJtrue refKwl⇒JaKw∗wl . λhw.
∧
l /∈dom(w) k [l: true] l [h | l: true]

freeψ : a → (ψ ref −−∗ a)

JfreeψKw def= λkJaKw.Πwl⊥w. λlJψ refKwl . λhw∗wl . k h|w

hoistσ,ψ,τ : (σ ∗ (ψ ∧ τ)) → ((σ ∧ ψ) ∗ τ)
Jhoistσ,ψ,τ Kw

def= λx. x

!ψ : (ψ → a) → (ψ ref ∗ true → a)

J!ψKw def= λkJψ→aKw. λxJψ ref∗trueKw. λhw.

case x of ι(wl,wt) (lJψ refKwl , tJtrueKwt) Z⇒ k (h l)h

:=ψ : a → ((ψ ref ∗ true) ∧ ψ → a)

J:=ψKw def= λkJaKw. λ(xJψ ref∗trueKw, vJψK). λhw.
case x of ι(wl,wt) (lJψ refKwl , tJtrueK) Z⇒ k [h | l: v]

frameϕ : (a → a) → ((ϕ −−∗ a) → (ϕ −−∗ a))

14

Berdine and O’Hearn

JframeϕKw def= λcJa→aKw. λk
Q

wf⊥wJϕKwf⇒JaKw∗wf
.Πwf⊥w. λf JϕKwf . λh′w∗wf .

c (λhw. k wf f (h′|wf
∗h))h′|w

Here, h|w denotes the subheap of h gotten from restricting the domain of h to
the domain of world w.

It is worth talking through the semantics of a few examples. Let’s start
with free. It expects a continuation k in world w and a reference from a
completely separate world from k’s. Because of the singleton semantics of
references, this separate world can only be a singleton, consisting of a single
location l. We then take in a heap h that gives values to locations in w as well
as l, as we are required to by the overall command continuation, and we have
to produce an element of 2. We do this by restricting h to w, thus effectively
deallocating l, and supplying the trimmed heap to our input continuation k.

The trickiest example is new . We first take in a reference-expecting con-
tinuation k, where that continuation expects a reference argument that is
separate from the current world w. So we are forced, by the semantics of
types, to find a fresh location if we are to use k. However, there is a problem:
there are many such fresh locations. So we choose any of them, but require
that the overall result be happy with whatever choice we make by taking the
conjunction of the results, where in the definition JaKw = H(w) ⇒ 2 we are
viewing the set 2 as the booleans consisting of true and false. This is the one
place where we use knowledge of what 2 is.

To understand the use of conjunction here, it helps to recall one way of
doing a continuation semantics of the nondeterministic choice (c1 choose c2)
of two commands, i.e., continuation transformers of type a → a. We could
do this, if we know that 2 is used for final answers, with λk. λs. (Jc1Kw k s ∧
Jc2Kw k s). Operationally, we would not expect both choices to be taken in a
particular run, but ∧ allows us to record, denotationally, that for the command
to be happy it has to be content with whichever nondeterministic choice is
made. (This use of maps from states to truth values in the answer type makes
continuation transformers similar to predicate transformers.) The semantics
of new uses this very idea, adjusted to account for a reference-expecting con-
tinuation rather than a plain command continuation as an argument, and
considering a larger conjunction corresponding to a larger nondeterministic
choice. Again, this does not require all choices to be taken operationally, but
captures that k must be content with whatever choice is made.

We will not attempt to give a formal connection here to predicate trans-
formers or operational semantics, but offer these remarks just as an intuitive
aid that we have found helpful ourselves.

The information we have given is enough to specify the model for the whole
language. What we have described is the semantics of types and constants for
a semantics in the product category SetWld, where the doubly closed structure
(∧,→,∗,−−∗) is as in the basic separation model of [12]. To fill out the semantics
we just have to follow the categorical scheme as laid down in [15,12]. We will

15

Berdine and O’Hearn

not repeat the details here, but will simply state

Theorem 5.1 (Soundness) Every derivation of a typing judgment Γ `M :
τ determines a family of functions of semantic type

JΓKw −→ JτKw

indexed by worlds w.

(Note: In the general functor-category models of [12] this family would
come with naturality constraints. For this particular model, though, those
constraints are trivial because Wld is a discrete category.)

This is the kind of result one expects of an explicitly-typed semantics (a
“Church model”). Rather than introduce a kind of error, and then prove that
it is avoided by typing, we build our meanings without mentioning error at
all, and observe that our language stays within its language of discourse.

This possible world form of semantics can take some getting used to, par-
ticularly the valuations for terms. The semantics of types, though, is com-
paratively direct and plays the most important role, in determining what can
and cannot be done in the language.

In addition to being a useful design aid, such models provide help in under-
standing essential differences between languages. For example, the remarks
we made about encapsulation flowed from the observation that several linear
languages can be modeled in possible world models like that here, where the
nonlinear function type is interpreted essentially as (A −−∗ B)∧ emp. It is then
immediate that such functions cannot be used to access shared, hidden state,
and it is equally obvious that such sharing can be done using the cartesian
closed structure (additive) that exists in the model. Generally speaking, the
method of setting down a model first – to “put your domains on the table” [19]
– is a powerful complement to the nowadays more prevalent operational meth-
ods, and it appears that much more can be got out of it in applications of
substructural type systems.

References

[1] A. Ahmed, M. Fluet, and G. Morrisett. L3: A linear language with locations.
Technical Report TR-24-04, Harvard University, 2004.

[2] A. Ahmed, M. Fluet, and G. Morrisett. A step-indexed model of substructural
state. In ICFP, 2005.

[3] L. Birkedal, N. Torp-Smith, and H. Yang. Semantics of separation-logic typing
and higher-order frame rules. In 20th LICS, pages 260–269, 2005.

[4] J. Cheney and G. Morrisett. A linearly typed assembly language. Technical
Report 2003-1900, Department of Computer Science, Cornell University, 2003.

[5] M. Collinson and D. Pym. A bunched approach to the semantics of regions and
locations. In SPACE, 2006.

16

Berdine and O’Hearn

[6] M. Collinson, D. J. Pym, and E. P. Robinson. On bunched polymorphism. In
CSL, pages 36–50, 2005.

[7] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50(1):1–101, 1987.

[8] S. S. Ishtiaq and P. W. O’Hearn. BI as an assertion language for mutable data
structures. In 28th POPL, pages 14–26, 2001.

[9] G. Morrisett, A. J. Ahmed, and M. Fluet. L3: A linear language with locations.
In P. Urzyczyn, editor, TLCA, volume 3461 of LNCS, pages 293–307, 2005.

[10] G. Morrisett, D. Walker, K. Crary, and N. Glew. From System F to typed
assembly language. ACM TOPLAS, 21(3):527–568, 1999.

[11] P. O’Hearn, J. Reynolds, and H. Yang. Local reasoning about programs that
alter data structures. In CSL, volume 2142 of LNCS, pages 1–19, 2001.

[12] P. W. O’Hearn. On bunched typing. J. Functional Programming, 13(4), 2003.

[13] P. W. O’Hearn and D. J. Pym. The logic of bunched implications. Bulletin of
Symbolic Logic, 5(2):215–244, June 99.

[14] P. W. O’Hearn, H. Yang, and J. C. Reynolds. Separation and information
hiding. In 31st POPL, pages 268–280, 2004.

[15] D. J. Pym. The Semantics and Proof Theory of the Logic of Bunched
Implications, volume 26 of Applied Logic Series. Kluwer, 2002.

[16] J. Reynolds. Separation logic: A logic for shared mutable data structures. In
17th LICS, pages 55–74, 2002.

[17] J. C. Reynolds. Syntactic control of interference. In 5th POPL, 1978.

[18] J. C. Reynolds. The essence of Algol. In J. W. de Bakker and J. C. van Vliet,
editors, Algorithmic Languages, pages 345–372. North-Holland, 1981.

[19] D. S. Scott and C. Strachey. Toward a mathematical semantics for computer
languages. In Proceedings of the Symposium on Computers and Automata, 1971.

[20] F. Smith, D. Walker, and J. G. Morrisett. Alias types. In G. Smolka, editor,
ESOP, volume 1782 of LNCS, pages 366–381. Springer, 2000.

[21] K. N. Swadi and A. W. Appel. Typed machine language and its semantics.
Manuscript, 2001.

[22] H. Thielecke. Frame rules from answer types for code pointers. In POPL, 2006.

[23] P. Wadler. Linear types can change the world! In M. Broy and C. Jones,
editors, Programming Concepts and Methods, North Holland, 1990.

[24] P. Wadler. Is there a use for linear logic? In PEPM, pages 255–273, 1991.

[25] D. Walker. Substructural type systems. In B. Pierce, editor, Advanced Topics
in Types and Programming Languages, MIT Press, 2005.

[26] D. Walker and J. Morrisett. Alias types for recursive data structures. In 3rd
Types in Compilation, pages 177–206, 2001. LNCS 2071.

17

	Introduction
	Type System
	Encapsulation
	Framing
	Model
	References

