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Abstract
An invariance assertion for a program location` is a statement that
always holds at̀ during execution of the program. Program invari-
ance analyses infer invariance assertions that can be useful when
trying to prove safety properties. We use the termvariance asser-
tion to mean a statement that holds between any state at` and any
previous state that was also at`. This paper is concerned with the
development of analyses for variance assertions and their applica-
tion to proving termination and liveness properties. We describe
a method of constructing program variance analyses from invari-
ance analyses. If we change the underlying invariance analysis, we
get a different variance analysis. We describe several applications
of the method, including variance analyses using linear arithmetic
and shape analysis. Using experimental results we demonstrate that
these variance analyses give rise to a new breed of termination
provers which are competitive with and sometimes better than to-
day’s state-of-the-art termination provers.

Categories and Subject DescriptorsD.2.4 [Software Engineer-
ing]: Software/Program Verification; F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams

General Terms Verification, Reliability, Languages

Keywords Formal Verification, Software Model Checking, Pro-
gram Analysis, Liveness, Termination

1. Introduction
An invariance analysistakes in a program as input and infers a set
of possibly disjunctive invariance assertions (a.k.a.,invariants) that
is indexed by program locations. Each location` in the program
has an invariant that always holds during any execution at`. These
invariants can serve many purposes. They might be used directly
to prove safety properties of programs. Or they might be used in-
directly, for example, to aid the construction of abstract transition
relations during symbolic software model checking [29]. If a de-
sired safety property is not directly provable from a given invariant,
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the user (or algorithm calling the invariance analysis) might try to
refine the abstraction. For example, if the tool is based on abstract
interpretation they may choose to improve the abstraction by delay-
ing the widening operation [28], using dynamic partitioning [33],
employing a different abstract domain, etc.

The aim of this paper is to develop an analogous set of tools
for program termination and liveness: we introduce a class of tools
called variance analyseswhich infer assertions, calledvariance
assertions, that hold between any state at a location` and any
previous state that was also at location`. Note that a single variance
assertion may itself be a disjunction. We present a generic method
of constructing variance analyses from invariance analyses. For
each invariance analysis, we can construct what we call itsinduced
variance analysis.

This paper also introduces a condition on variance assertions
called thelocal termination predicate. In this work, we show how
the variance assertions inferred during our analysis can be used to
establish local termination predicates. If this predicate can be es-
tablished for each variance assertion inferred for a program, whole
program termination has been proved; the correctness of this step
relies on a result from [37] ondisjunctively well-founded over-
approximations. Analogously to invariance analysis, even if the in-
duced variance analysis fails to prove whole program termination,
it can still produce useful information. If the predicate can be estab-
lished only for some subset of the variance assertions, this induces
a different liveness property that holds of the program. Moreover,
the information inferred can be used by other termination provers
based on disjunctive well-foundedness, such as TERMINATOR [14].
If the underlying invariance analysis is based on abstract interpre-
tation, the user or algorithm could use the same abstraction refine-
ment techniques that are available for invariance analyses.

In this paper we illustrate the utility of our approach with three
induced variance analyses. We construct a variance analysis for
arithmetic programs based on the Octagon abstract domain [34].
The invariance analysis used as input to our algorithm is composed
of a standard analysis based on Octagon, and a post-analysis phase
that recovers some disjunctive information. This gives rise to a fast
and yet surprisingly accurate termination prover. We similarly con-
struct an induced variance analysis based on the domain of Polyhe-
dra [23]. Finally, we show that an induced variance analysis based
on the separation domain [24] is an improvement on a termination
prover that was recently described in the literature [3]. These three
abstract domains were chosen because of their relative position on
the spectrum of domains: Octagon is designed to be extremely fast,
at the expense of accuracy, whereas Polyhedra and the separation
domain are more powerful at the cost of speed.
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01 VARIANCEANALYSIS(P, L, I]) {
02 IAs := INVARIANCEANALYSIS(P, I])
03 foreach ` ∈ L {
04 LTPreds[`] := true
05 O := ISOLATE(P, L, `)
06 foreachq ∈ IAs such thatpc(q) = ` {
07 VAs := INVARIANCEANALYSIS(O, STEP(O, {SEED(q)}))
08 foreachr ∈ VAs {
09 if pc(r) = ` ∧ ¬WELLFOUNDED(r) {
10 LTPreds[`] := false
11 }
12 }
13 }
14 }
15 return LTPreds
16}

Figure 1. Parameterized variance analysis algorithm.P is the
program to be analyzed, the set of program locationsL is a
set of cutpoints, andI] is the set of initial states. To instan-
tiate the variance analysis one must fix the implementations of
INVARIANCEANALYSIS, STEP, SEED and WELLFOUNDED.

In their own right each of these induced variance analyses is
on the leading edge in the area of automatic termination proving.
For example, in some cases the Octagon-based tool is the fastest
known termination prover. But the more important point is that
these variance analyses are not specially-designed: their power
is determined almost exclusively by the power of the underlying
invariance analysis.

2. Inducing invariance analyses
In this section we informally introduce the basic ideas behind our
method. Later, in Sections 3 and 4, we will formally define the
components in the algorithm, and prove its soundness.

Fig. 1 contains our analysis algorithm. To instantiate the analy-
sis to a particular domain, we must provide implementations for the
following components:

• INVARIANCEANALYSIS: The underlying invariance analysis.

• STEP: A single-step function over INVARIANCEANALYSIS’s
abstract domain.

• SEED: An additional operation on elements of the abstract do-
main (Definition 15 in Section 4).

• WELLFOUNDED: An additional operation on elements of the
abstract domain (Definition 13 in Section 4).

The implementations of INVARIANCEANALYSIS and STEP are
given by the underlying invariance analysis, whereas the imple-
mentations of SEED and WELLFOUNDED must usually be defined
(though they are not difficult to do so in practice).

When instantiated with the implementations of SEED, WELL-
FOUNDED, etc. this algorithm performs the following steps:

1. It first runs the invariance analysis, computing a set of invari-
ance assertions,IAs.

2. Each elementq (from IAs) is converted into a binary relation
via the SEED operation.

3. The algorithm then re-runs the invariance analysis from the
seeded state after a single step of execution to compute a fixed
point over variance assertions,VAs. That is, during this step the
invariance analysis computes an approximation (represented as
a binary relation on states) of the behavior of the loop.

4. The analysis then takes each element ofVAs and uses the
WELLFOUNDED operation in order to establish the validity
of a set of local termination predicates, stored in an array
LTPreds. A location `’s local termination predicate holds if
LTPreds[`] = true.

The reason we take a single step before re-running the invariance
calculation is that we are going to leverage the result of [37] on
disjunctive well-foundedness, which connects well-foundedness of
a relation to over-approximation of its non-reflexive transitive clo-
sure. Without STEP we would get the reflexive transitive closure
instead.

In general,VAs, IAs andI] in this algorithm might be (finite)
sets of abstract elements, rather than singletons. We regard these
sets as disjunctions and, in particular, if a variance assertion at
` is the disjunction of multiple elements ofVAs, then `’s local
termination lemma holds only in the case that WELLFOUNDED
returns true for each disjunct.

Although we regard each set as a disjunction, we are not insist-
ing that our abstract domains are closed under disjunctive comple-
tion [19]. INVARIANCEANALYSIS might even return just a single
abstract element, or it might return several without computing the
entire disjunctive completion; we might employ techniques such as
in [33, 41] to efficiently approximate disjunctive completion. But,
the decision of how much disjunction is present is represented in
the inputs STEPand INVARIANCEANALYSIS, and is not part of the
VARIANCEANALYSIS algorithm.

For our experiments with numerical domains, we fitted them
with a post-analysis to extract disjunctive information from oth-
erwise conjunctive domains. That is, the invariance analyses used
by the VARIANCEANALYSIS algorithm are composed of the stan-
dard numerical domain analysis together with a method of disjunc-
tion extraction. On the other hand, for our shape analysis instantia-
tion no pre-fitting is required because the abstract domain explicitly
uses disjunction (Section 6).

2.1 Illustrative example

Consider the small program fragment in Fig. 2, wherenondet()
represents non-deterministic choice. In this section we will use this
program while stepping through the VARIANCEANALYSIS algo-
rithm. We will assume that our underlying invariance analysis is
based on the Octagon domain, which can express conjunctions of
inequalities of the form±x + ±y ≤ c for variablesx andy and
constantc.

Note that during this example we will associate invariance as-
sertions and variance assertions with line numbers. We will say that
an assertion holds at linèif and only if it is always valid atthe be-
ginningof the line, before executing the code contained at that line.
Furthermore, we will choose a set of program location cutpoints
to be the first basic block of a loop’s body:L = {82, 83, 85}.
Location82 is the cutpoint for the loop contained in lines81–91,
location83 is the cutpoint for the loop contained in lines82–90,
and85 is the cutpoint for the loop within lines84–86.

GivenL, our parameterized variance analysis attempts to estab-
lish the validity of a local termination predicate for each location
` ∈ L, when the programP is run from starting states satisfying
input conditionI].

Note that while the outermost loop in Fig. 2 does not guarantee
termination, so long as execution remains within the loop starting
at location82, it is not possible for the loop in lines82–90 to
visit location 83 infinitely often. In this example we will show
how VARIANCEANALYSIS is able to prove a more local property
at location83:
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81 while (nondet()) {
82 while (x>a && y>b) {
83 if (nondet()) {
84 do {
85 x = x - 1;
86 } while (x>10);
87 } else {
88 y = y - 1;
89 }
90 }
91 }

Figure 2. Example program fragment.

LT (P, L, 83, I]): Line83 is visited infinitely often only in the
case that the program’s execution exits the loop contained
in lines82 to 90 infinitely often.

The formal definition ofLT (P, L, `, I]), the local termination
predicate at̀ , will be given later (Definition 8 in Section 3).

Although we will not do so in this example, VARIANCEANALY-
SIS would also attempt to establish local termination predicates for
the remaining cutpoints:

LT (P, L, 82, I]): Line82 is visited infinitely often only in the
case that the program’s execution exits the loop contained
in lines81 to 91 infinitely often.

LT (P, L, 85, I]): Line85 is visited infinitely often only in the
case that the program’s execution exits the loop contained
in lines84 to 86 infinitely often.

Because the outer loop is not terminating, VARIANCEANALYSIS

would fail to proveLT (P, L, 82, I]). As for 85, it would succeed
to proveLT (P, L, 85, I]).

We are using a program with nested loops here to illustrate the
modularity afforded by our local termination predicates: even if the
inner loops and outer context are diverging, this will not stop us
from proving the local termination predicate at location83. That is
to say: the termination of the innermost loop beginning at line84
does not affect our predicate. We could replace line86

86 } while (x>10);

with

86 } while (nondet());

and still establishLT (P, L, 83, I]). However,LT (P, L, 85, I])
would not hold in this case.

Invariance analysis (Line 2 of Fig. 1). We start by running an
invariance analysis using the Octagon domain (possibly with a
disjunction-recovering post-analysis). In this example, if we had
the text of the entire program, we could start with an initial state of
I] = (pc = 0). Note that we will assume that the program counter
is represented with an additional equalitypc = c in each abstract
program state wherec is a numerical constant. Instead of starting at
location0, assume that at location81 we haveI] = (pc = 81∧x ≥
a + 1∧ y ≥ b + 1). From this starting state the invariance analysis
could compute an invariantIA83 ∈ IAs:

IA83 , pc = 83 ∧ x ≥ a + 1 ∧ y ≥ b + 1

An abstract state, of course, denotes a set of concrete states.IA83,
for example, represents the set of states:

{s | s(pc) = 83 ∧ s(x) ≥ s(a) + 1 ∧ s(y) ≥ s(b) + 1}

Isolation (Line 5 of Fig. 1). The next thing we do, for location
83, is “isolate” the smallest strongly-connected subgraph ofP ’s
control-flow graph containing location83, subject to some con-
ditions involving the set of locationsL = {82, 83, 85}, defined
formally in Section 3. Concretely, from the overall programP we
construct a new programO, which is the same asP with the ex-
ception that the statement at line90 is now:

90 }; assume(false);

Because of thisassume statement, executions that exit the loop are
not considered. Furthermore,pc in the isolated program’s initial
state will be83. Together, these two changes restrict execution to
stay within the loop.

This isolation step gives us modularity for analyzing inner
loops. It allows us to establish a local termination predicate for
O even when it is nested within another loopP that diverges. Con-
cretely, isolation will eliminate executions which exit or enter the
loop.

Inferring variance assertions (Lines 6 and 7 of Fig. 1).From
this point on we will use our invariance analysis to reason about the
isolated subprogram rather than the original loop. Let−→O denote
the transition relation for the isolated subprogramO. We then take
all of the disjuncts in the invariance assertion at location83 (in this
case there is only one,IA83) and convert them into binary relations
from states to states:

SEED(IA83) = (pc = 83∧ pcs = 83∧ x ≥ a + 1∧ y ≥ b + 1

∧ xs = x ∧ ys = y ∧ as = a ∧ bs = b)

SEED(IA83) is, of course, just a state that references variables not
used in the program—these variables can be thought of as logical
constants. However, in another sense, SEED(IA83) can be thought
of as a binary relation on program states:

{(s, t) | s(pc) = t(pc) = 83
∧ s(x) = t(x)
∧ s(y) = t(y)
∧ s(a) = t(a)
∧ s(b) = t(b)
∧ t(x) ≥ t(a) + 1
∧ t(y) ≥ t(b) + 1 }

Notice that we’re usingxs to represent the value ofx in s, andx to
represent the value ofx in t. That is,s gives values to the variables
{pcs, xs, ys, as, bs} while t gives values to{pc, x, y, a, b}.

We call this operation seeding because it plants a starting (di-
agonal) relation in the abstract state. Later in the algorithm this
relation will grow into one which indicates how progress is made.

We then step the program once from SEED(IA83) with STEP,
approximating one step of the program’s semantics, giving us:

pcs = 83 ∧ pc = 84 ∧ x ≥ a + 1 ∧ y ≥ b + 1

∧ xs = x ∧ ys = y ∧ as = a ∧ bs = b

Finally, we run INVARIANCEANALYSIS again with this new state
as the starting state, and the isolated subprogramO as the program,
which gives us a set of invariants at locations82, 83, etc. that
corresponds to the setVAs in the VARIANCEANALYSIS algorithm
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of Fig. 1.

VAA
83 , (pcs = 83 ∧ pc = 83 ∧ x ≥ a + 1 ∧ y ≥ b + 1 ∧

xs ≥ x + 1 ∧ ys ≥ y ∧ as = a ∧ bs = b)

VAB
83 , (pcs = 83 ∧ pc = 83 ∧ x ≥ a + 1 ∧ y ≥ b + 1 ∧

xs ≥ x ∧ ys ≥ y + 1 ∧ as = a ∧ bs = b)

VAC
83 , (pcs = 83 ∧ pc = 83 ∧ x ≥ a− 1 ∧ y ≥ b + 1 ∧

xs ≥ x + 1 ∧ ys ≥ y + 1 ∧ as = a ∧ bs = b)

{VAA
83,VAB

83,VAC
83} ⊆ VAs

The union of these three relations

VAA
83 ∨VAB

83 ∨VAC
83

forms the variance assertion for line83 in P , which is to say a su-
perset of the possible transitions from states at83 to states also at
line 83 reachable in1 or more steps of the program’s execution.
(Note that in this case INVARIANCEANALYSIS is extracting dis-
junctive information implicit in the fixed point computed.) The dis-
junctionVAA

83∨VAB
83∨VAC

83 is a superset of the transitive closure
of the program’s transition relation restricted to pairs of reachable
states both at location83.

One important aspect of this technique is that the analysis is
not aware of our intended meaning of variables likexs andys: it
simply treats them as symbolic constants. It does not know that the
states are representing relations. (See Definition 12 and the further
remarks on relational analyses at the end of Section 4.) However,
as it was for SEED(IA83), it is appropriate for us to interpret the
meaning ofVAA

83 as a relation on pairs of states.
The variance assertionVAA

83∨VAB
83∨VAC

83 shows us different
ways in which the subprogram can make progress. BecauseVAA

83∨
VAB

83∨VAC
83 is a variance assertion, this measure of progress holds

betweenany twostatess andt at location83 wheres is reachable
and t is reachable in 1 or more steps froms. Notice thatVAA

83

contains an inequality betweenx and xs, whereas SEED(IA83)
contained an equality. This means that, in the first of the three
disjuncts in the variance assertion at line83, x is at least1 less
thanxs: In its relational meaning, because it is a variance assertion
the formula says “in the current state,x is less than it was before”.

Finally, when we “run the analysis again” on subprogramO the
inner loop containing location85 must be analyzed. Literally, then,
to determine the local termination property for locations83 and
85 involves some repetition of work. However, if we analyzed an
inner loop first an optimization would be to construct a summary,
which we could reuse when analyzing an outer loop. The exact
form of these summaries is delicate, and we won’t consider them
explicitly in this paper. But, we remark that the summary would
not have to show the inner loop terminating: When an inner loop
fails to terminate this does not stop the local termination predicate
from holding for the outer loop, as the example in this section
demonstrates.

Proving local termination predicates (Lines 8–11 of Fig. 1).We
now attempt to use the variance assertion at line83 in O to establish
the local termination predicate at line83 in P . Consider the relation

Tr83 = {(s, t) | s |= IA83 ∧ s −→+
O t ∧ t(pc) = 83}

Showing thatTr83 is well-founded allows us to conclude the local
termination predicate:

Location83 is not visited infinitely often in executions of the
isolated subprogramO.

The reason is due to the over-approximation computed at line 2
in Fig. 1. The abstract stateVA83 over-approximates all of the
states that can be reached at line83, even as parts of ultimately

divergent executions, so we now do not need to consider other
states to understand the behavior of this subprogram.

We stress that the “not visited infinitely often” property here
doesnot imply in general that the isolated subprogramO termi-
nates. In the example of this section the inner loop does terminate,
but a trivial example otherwise is

1 while (x>a) {
2 x=x-1;
3 while (nondet()) {}
4 }

Here we can show that location2 is not visited infinitely often when
the program is started in a state wherex > a.

Continuing with the running example, due to the result of [37],
a relationRel is well founded if and only if its transitive closure
Rel+ is a subset of a finite unionT1 ∪ · · · ∪ Tn and each rela-
tion Ti is well-founded. Notice that we have computed such a finite
set:VAA

83, VAB
83, andVAC

83. We know that the union of these three
relations over-approximates the transitive closure of the transition
relation of the programP limited to states at location83. Further-
more, each of the relations are, in fact, well-founded. Thus, we can
reason that the program will not visit location83 infinitely often
unless it exits the subprogram infinitely often. We will make this
connection formal in Section 3.

The last step to automate is proving that each of the relations
VAA

83, VAB
83, andVAC

83 are well-founded. Because these relations
are represented as a conjunction of linear inequalities, they can
be automatically proved well-founded by rank function synthesis
engines such as RANK FINDER [36] or POLYRANK [6, 7].

Benefits of the approach

• The technique above is fast. Using the Octagon-based program
invariance analysis packaged with [34] together with RANK -
FINDER, this example is proved terminating in0.07 seconds.
TERMINATOR, in contrast, requires8.3 seconds to establish the
same local termination predicate.

• Like TERMINATOR [14] or POLYRANK [6, 7], the technique
is completely automatic. No ranking functions need to be given
by the user. Simplycheckingtermination arguments is easy, and
has been done automatically since the 1970s. In contrast, both
automaticallyfinding and checkingtermination arguments for
programs is a much more recent step. This will be discussed
further in Section 7.

• As in TERMINATOR, the technique that we have described
makes many little well-foundedness checks instead of one big
one. If we can find the right decomposition, this makes for a
strong termination analysis. In the proposed technique, we let
the invariance generator choose a decomposition for us (e.g.
VAA

83, VAB
83, VAC

83). Furthermore, we let the invariance engine
approximate all of the choices that a program could make dur-
ing execution with a finite set of relations.

• As is true in TERMINATOR, because this analysis uses a dis-
junctive termination argument rather than a single ranking func-
tion, our termination argument can be expressed in a simpler
domain. In our setting this allows us to use domains such as Oc-
tagon [34] which is one of the most efficient and well-behaved
numerical abstract domains.

For example, consider a traditional ranking function for the loop
contained in lines82–90:

f(s) = s(x) + s(y)

Checking termination in the traditional way requires support for
four-variable inequalities in the termination prover, as we must
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proveR ⊆ Tf , whereR is the loop’s transition relation and

Tf = {(s, t) | f(s) ≥ f(t)− 1 ∧ f(t) ≥ 0}
i.e.

Tf = {(s, t) | s(x)+s(y) ≥ t(x)+t(y)−1∧ t(x)+t(y) ≥ 0}
Notice the four-variable inequality (wheres(x) andt(x) will be
treated with different arithmetic variables):

s(x) + s(y) ≥ t(x) + t(y)− 1

Thus, we cannot use the Octagon domain in this setting. We can
in our setting becauseVAA

83, VAB
83, andVAC

83 are simpler than
Tf : they are all conjunctions of two-variable inequalities, such
asx ≤ xs but notx + y > xs.

• Although tools like RANK FINDER synthesize ranking func-
tions, we do not need them—we simply need a Boolean result.
This is in contrast to TERMINATOR, which uses the synthesized
ranking functions to create new abstractions from counterex-
amples. As a consequence, any sound tool that proves well-
foundedness will suffice for our purposes.

• Our technique is robust with respect to arbitrarily nested loops,
as we’re simply using the standard program analysis techniques
to prove relationships between visits to location83. Even if the
innermost loop did not terminate, we would still be able to es-
tablish the local termination predicate at location83. For this
reason our new analysis fits in well with termination decompo-
sition techniques based on cutpoints [25].

• If the termination proof does not succeed due to the discovery
of a non-well-founded disjunct, the remaining well-founded
disjuncts are now in a form that can be passed to a tool like
TERMINATOR—TERMINATOR can then use this as a better
initial termination argument than its default one from which it
will refine based on false counterexamples as described in [12].

• In contrast to TERMINATOR, VARIANCEANALYSIS seeds in a
dynamic fashion. This means thatabstract states are seeded
after some disjunction has been introduced by the invariance
analysis, which can improve precision and allows us to dynam-
ically choose which variables to include in the seeding. In fact,
an alternative method of approximating our core idea would
be to first use the source-to-source transformation described in
[13] on the input program and then apply an invariance analysis
on the resulting program. We have found, though, that taking
this approach results in a loss of precision.

• We do not need to check that the disjunction of the variance
assertions forms a transition invariant—it simply holds by con-
struction. In TERMINATOR this inclusion check is the perfor-
mance bottleneck.

3. Concrete semantics and variance assertions
In this section we give a precise account of the local termination
predicates, their relation to well-foundedness for isolated programs,
and the relation to variance assertions. These properties can be
formulated exclusively in terms of concrete semantics.

3.1 Programs and loops

DEFINITION 1 (Locations).We assume a fixed finite setL of pro-
gram locations.

DEFINITION 2 (Programs).A programP ∈ P is a rooted, edge-
labeled, directed graph over vertex setL.

Programs are thought of as a form of control-flow graphs
where the edges are labeled with commands which denote rela-
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Figure 3. Graph representation of the program from Fig. 2, where
we have circled a set of cutpoints. Note that assumptions involving
nondet have been elided.

tions 2(DC×DC) on program statesDC .1 This formulation rep-
resents programs in a form where all control flow is achieved by
nondeterministic jumps, and branch guards are represented with
assumptions. For example, Fig. 3 shows a representation of the
program from Fig. 2 in this form.

We use the following notation: We writeP (σ) to indicate that
there is a directed path in graphP through the ordered sequence of
verticesσ. We write· for sequence concatenation.

The control-flow graph structure of programs is used to define
the notion of a set of cutpoints [25] in the usual way.

DEFINITION 3 (Cutpoints).For a programP , a setL of cutpoints
is a subset ofL such that every (directed) cycle inP contains at
least one element ofL.

3.2 Isolation

In order to formally describe the ISOLATE procedure from Fig. 1,
we first must define several constructs over program control-flow
graphs.

DEFINITION 4 (SCSG). For a programP and set of cutpointsL,
we define a setSCSG(P, L) of strongly-connected subgraphsof
P :

SCSG(P, L) ,
S

` ∈ L mscsgd(`)

whereO ∈ mscsgd(`) iff

1. O is a non-empty, strongly-connected subgraph ofP ;
2. all vertices inO are dominated bỳ, where for verticesm and

n, n is dominated bym iff P (r · σ · n) impliesm ∈ σ wherer
is the root vertex;

3. every cycle inP (that is, a cycle in the control-flow graph, not
in the executions of the program) is either contained inO or
contains a cutpoint inL that is not inO; and

4. there does not exist a strict supergraph ofO that satisfies these
conditions.

1 The invariance analysis algorithm relies (via the ISOLATE operation) on
being able to identify loops in programs. This led us to be explicit about
control-flow graphs, rather than use the usual, syntax-free, formulation in
terms of functions over concrete or abstract domain elements.
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For a well-structured program, and the set of cutpoints consisting
of all locations just inside of loop bodies and recursive function
call-sites, Definition 4 identifies the innermost natural loop contain-
ing `. This also handles non-well-structured but reducible loops,
but does not allow isolation of non-reducible subgraphs (such as
loops formed bygotos from one branch of a conditional and back).
The subgraphs ofP identified by SCSG(P, L) are the strongly-
connected components ofP , plus some which are not maximal.
Condition 2 limits the admitted non-maximal subgraphs to only
those that, intuitively, are inner loops of a strongly-connected com-
ponent. Condition3 ensures that the allowed subgraphs are not at
odds with the given set of cutpoints, which may force merging mul-
tiple loops together into one subgraph. Condition4 ensures that the
subgraph for a loop includes its inner loops. These sorts of issues
are familiar from compilation [1, 2].

Note that the elements of SCSG(P, L), being a superset of the
strongly-connected components ofP , cover every cycle in (the
control-flow graph of)P . Another point to note is that two elements
of SCSG(P, L) are either disjoint or one is a subset of the other.

DEFINITION 5 (LP). For a programP , set of cutpointsL, and
location`, LP(P, L, `) is the set of vertices of the smallest element
of SCSG(P, L) which contains̀ .

As an example, ifP is the program in Fig. 3, andL =
{82, 83, 85}, SCSG(P, L) = {{84..86}, {82..90}, {81..91}},
and we have:

LP(P, L, 82) = {81..91}
LP(P, L, 83) = {82..90}
LP(P, L, 85) = {84..86}

DEFINITION 6 (ISOLATE). For program P , set of cutpointsL,
and program location`, ISOLATE(P, L, `) is the induced sub-
graph based onLP(P, L, `). That is, the subgraph ofP contain-
ing only the edges between elements ofLP(P, L, `). The root of
ISOLATE(P, L, `) is `.

Informally, ISOLATE(P, L, `) constructs a subprogram ofP such
that execution always remains within LP(P, L, `).

Note that we have given mathematical specifications of, but
not algorithms for computing, sets of cutpoints, SCSG, LP, etc.
In practice efficient algorithms are available.

3.3 Local termination predicates

We now develop the definition of a local termination predicate.
To do so we must also develop notation for several fundamental
concepts, such as concrete semantics.

DEFINITION 7 (Concrete semantics).The concrete semantics of a
program is given by:

• a setDC of program states, and
• a function−→(·): P → 2(DC×DC) from programs totransition

relations.

We use a presentation where program states include program loca-
tions, which we express with

• a functionpcP : DC → L from program states to values of the
program counter.

The transition relations are constrained to only relate pairs of
states for which there is a corresponding edge in the program, that
is, s −→P t impliesP (pcP (s) · pcP (t)).

When we associate a programP with a setIP ⊆ DC of initial
stateswe will require thatpc(s) is the root of the control-flow graph
for eachs ∈ IP .

Recall from Section 2 that the local termination predicate at line
82 was informally stated as

Line 83 is visited infinitely often only in the case that the
program’s execution exits the loop contained in lines82 to
90 infinitely often.

That is, the local termination predicate is a liveness property about
location83, which could be expressed in linear temporal logic [35]
as:

�
�
�♦ pc = 83 =⇒ ♦ pc 6∈ LP(P, L, 83)

�

Next we formally define the notion of local termination predicate.

DEFINITION 8 (Local termination predicate (LT )). For program
P , cutpoint setL, program locatioǹ , and set of initial statesIP ,

LT (P, L, `, IP ) holds

if and only if for any infinite execution sequence

s0, s1, ..., si, ... with s0 ∈ IP and∀i. si −→P si+1

for all j ≥ 0

if pc(sk) = ` for infinitely manyk > j
thenpc(sk′) /∈ LP(P, L, `) for somek′ > j.

We now define a variant of well-foundedness (of the concrete
semantics) in which the domain and range of the relation is spe-
cialized to a given program locatioǹ.

DEFINITION 9 (WF ). For programO, program location`, and
set of initial statesIO, we say thatWF(O, `, IO) holds iff for any
infinite execution sequence

s0, s1, ..., si, ... with s0 ∈ IO and∀i. si −→P si+1

there are only finitely manyj > 0 such thatpc(sj) = `.

The key lemma is the following, which links well-foundedness
for an isolated loop to theLT (P, L, `, IP ) property.

PROPOSITION1 (Isolation).Let O = ISOLATE(P, L, `) and sup-
pose

• IP is a set of initial states for programP , and
• IO = {t | ∃s ∈ IP . s −→∗

P t ∧ pc(t) = `}.

If WF(O, `, IO) holds, thenLT (P, L, `, IP ) holds.

Proof: Removing a finite prefix ending just before a state at`
from a counterexample toLT (P, L, `, IP ) yields a counterexam-
ple toWF(O, `, IO). That is: Suppose by way of contradiction
thatWF(O, `, IO) and that¬LT (P, L, `, IP ), that is, there exists
an infinite execution sequences0, s1, ..., si, ... with s0 ∈ IP and
∀i. si −→P si+1 where there exists aj ≥ 0 such thatpc(sk) = `
for infinitely manyk > j andpc(sk′) ∈ LP(P, L, `) for all k′ > j.
Consider the suffixsj′ , sj′+1, ..., sj′+i, ... of the infinite execution
sequence for somej′ ≥ j such thatpc(sj′) = `. Sincepc(sj′+i) ∈
LP(P, L, `) for all i ≥ 0, andO = ISOLATE(P, L, `), we have
an execution sequence inO that visits` infinitely often. That is,
sj′+0, sj′+1, ..., sj′+i, ... with sj′ ∈ IO and∀i. si −→O sj′+i+1

such thatpc(sj′+k) = ` for infinitely manyk > j. This contradicts
WF(O, `, IO). �

Finally, if an analysis can establish the validity of a complete
set of local termination predicates, then this is sufficient to prove
whole program termination.

PROPOSITION2. LetL be a set of cutpoints forP andIP be a set
of initial states. If, for each̀ ∈ L, LT (P, L, `, IP ), then there is
no infinite execution sequence starting from any state inIP .
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Proof: Suppose for each̀ ∈ L, LT (P, L, `, IP ). Suppose by
way of contradiction that there is an infinite execution sequence:
s0, s1, ..., si, ... with s0 ∈ IP and∀i. si −→P si+1. Therefore at
least one location is visited infinitely often. Each of the infinitely-
often visited locations̀ has an associated LP(P, L, `). Let `′ be an
infinitely-often visited location whose set of locations LP(P, L, `′)
has cardinality not smaller than that of LP(P, L, `′′′) for any other
infinitely-often visited locatioǹ ′′′. A consequence of the defini-
tion of LT (P, L, `′, IP ) is that execution must leave, and return
to, the set (of control-flow graph locations) LP(P, L, `′) infinitely
often. Therefore there is a cycleC ⊆ L in P which is not con-
tained in LP(P, L, `′) and, by Definition 4, contains an infinitely-
often visited cutpoint̀ ′′ not in LP(P, L, `′). [Definition 4 does not
directly guarantee that̀′′ is visited infinitely often, but since exe-
cution leaves and returns to LP(P, L, `′) infinitely often, by a pi-
geonhole argument, at least one of the choices of cycleC must
include an infinitely-often visited cutpoint. Without loss of gener-
ality we choosè ′′.] Therefore, since the elements of SCSG(P, L)
cover every cycle ofP , there must exist LP(P, L, `′′) that con-
tains C. SinceC is not disjoint from LP(P, L, `′) and contains
`′′ /∈ LP(P, L, `′), LP(P, L, `′) ⊂ LP(P, L, `′′). In particular,
LP(P, L, `′′) is larger than LP(P, L, `′). Now since it contains an
infinitely-often visited cutpoint not in LP(P, L, `′), this contradicts
the proof’s assumption that LP(P, L, `′) is maximal. �

4. From Invariance Abstraction to Termination
In this section we use abstract interpretation to formally define the
items in the VARIANCEANALYSIS algorithm. We then link local
termination predicates and well-foundedness for isolated programs
to abstraction to prove soundness of VARIANCEANALYSIS.

4.1 Abstract interpretations

We will assume that an abstract interpretation [18, 19] of a pro-
gram is given by two pieces of information. The first is an over-
approximation of the individual transitions in programs, such as
by a function STEP : P → 2D]

→ 2D]

that works on abstract
statesD]. STEP(P, X) typically propagates each state inX for-
ward one step, in a way that over-approximates the concrete tran-
sitions of programP . The second is the net effect of what one
gets from the overall analysis results, which may be a function
INVARIANCEANALYSIS : P → 2D]

→ 2D]

that for programP ,
over-approximates the reflexive, transitive closure−→∗

P of the con-
crete transition relation ofP . INVARIANCEANALYSIS is typically
defined in terms of STEP. However the details as to how they are
connected is not important in this context. Widening or other meth-
ods of accelerating fixed-point calculations might be used [18]. In
this paper we are only concerned with the net effect, rather than
the way that INVARIANCEANALYSIS is obtained, and our formu-
lation of over-approximation below reflects this. We do, however,
presume that STEPand INVARIANCEANALYSIS are functions from
programs to abstractions. This assumption allows the local variance
analysis using ISOLATE.

If R is a binary relation then we use IMAGE(R, X) to denote its
post-image{y | ∃x ∈ X. xRy}.

DEFINITION 10 (Over-Approximation).An over-approximation
A of a concrete semantics−→(·) over concrete statesDC is

• a setD] of abstract states
• a function[[·]] : D] → 2DC

• a functionpc] : D] → L
• a functionSTEP(·) : P → 2D]

→ 2D]

• a functionINVARIANCEANALYSIS(·) : P → 2D]

→ 2D]

such that

• for all X ⊆ D]. IMAGE(−→P , [[X]]) ⊆ [[STEP(P, X)]] and
IMAGE(−→∗

P , [[X]]) ⊆ [[INVARIANCEANALYSIS(P, X)]]
• if s ∈ [[a]] thenpcP (s) = pc](a).

where we use the point-wise lifting of[[·]] to sets of abstract states:

[[·]] : 2D]

→ 2DC .

We use a powerset domain due to the fact that most successful
termination proofs must be path sensitive and thus we would like
to have explicit access to disjunctive information.2 Since we have
lifted the meaning function[[·]] pointwise, it is distributive (preserv-

ing unions) as a map from2D]

to 2DC . But, we are not requiring
the analysis to be a (full) disjunctive completion.

In particular, note that we do not require distributivity, or even
monotonicity, of INVARIANCEANALYSIS or STEP; thus, we can
allow for acceleration methods that violate these properties [8, 20,
22]. Furthermore, we do not require that union be used at join-
points in the analysis, such as at the end ofif statements; our
definition is robust enough to allow an over-approximation of union
to be used. We have used the powerset representation simply so
the resultVAs in the VARIANCEANALYSIS algorithm gives us a
collection of well-foundedness queries, allowing us to apply the
result of [37]. If the invariance analysis is not disjunctive, then the
VAs result set will be a singleton. In this case the variance analysis
will still be sound, but will give us imprecise results.

Notice that this definition does not presume any relation be-
tween STEP and INVARIANCEANALYSIS, even though the latter is
usually defined in terms of the former; the definition just presumes
that the former over-approximates−→P , and the latter−→∗

P . We
have just put in minimal conditions that are needed for the sound-
ness of our variance analysis.3

We do not assume that INVARIANCEANALYSIS(P, X) always
returns a finite set, even whenX is finite. However, if the re-
turned set is not finite when VARIANCEANALYSIS(P, L, I]) calls
INVARIANCEANALYSIS(P, X), our variance analysis algorithm
will itself not terminate.

4.2 Seeding, well-foundedness, and ghost state

We now specify seeding (SEED) and the well-foundedness check
(WELLFOUNDED) used in the VARIANCEANALYSIS algorithm
from Fig. 1. These comprise the additions one must make to an
existing abstract interpretation in order to get a variance analysis
by our method. Often, these are already implicitly present in, or
easily added to, an invariance analysis. Throughout this section
we presume that we have a concrete semantics together with an
over-approximation as defined above.

Seeding is a commonly used technique for symbolically record-
ing computational history in states. In our setting, the SEED opera-
tion in Fig. 1 is specific to the abstract domain. Therefore, instead
of providing a concrete definition, we specify properties that each
instance must satisfy. As a result, this gives significant freedom to
the developer of the SEED/WELLFOUNDED pair, as we will see in
Section 6 where we define the SEED/WELLFOUNDED pair for a
shape analysis domain.

2 It might be possible to formulate a generalization of our theory without
explicit powersets, using projections of certain disjunctive information out
of an abstract domain; we opted for the powerset representation for its
simplicity.
3 In fact, the variance analysis could be formulated more briefly using a sin-
gle over-approximation of the transitive closure−→+

P , but we have found
that separating INVARIANCEANALYSIS and STEP makes the connection to
standard program analysis easier to see.
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After seeding has been performed, the VARIANCEANALYSIS
algorithm proceeds to use the INVARIANCEANALYSIS to compute
variance assertions over pairs of states. In the following develop-
ment we formalize the encoding and interpretation between rela-
tions on pairs of states and predicates on single states.

First, we require a way to identifyghost statein the concrete
semantics. [In the program logic literature (e.g, see Reynolds [39]),
ghost variablesare specification-only variables that are not changed
by a program. We are formulating our definitions at a level where
we do not have a description of the state in terms of variables, so
we refer toghost state, by analogy with ghost variable.]

DEFINITION 11 (Ghostly Decomposition).A ghostly decomposi-
tion of the concrete semantics is a setSC with

• a bijection〈·, ·〉 : SC × SC → DC

such that

• 〈g, p〉 −→P 〈g′, p′〉 impliesg = g′.
• 〈g1, p〉 −→P 〈g1, p

′〉 implies〈g2, p〉 −→P 〈g2, p
′〉

• pcP 〈g1, p〉 = pcP 〈g2, p〉

In SC ×SC we think of the second component as the real program
state and the first as the ghost state. The first two conditions say that
ghost state does not change, and that it does not impact transitions
on program state.

Given a transition system it is easy to make one with a ghostly
decomposition just by copying the set of states. We do not insist,
though, that the bijection in the definition be an equality because
transition systems are often given in such a way that a decomposi-
tion is possible without explicitly using a product. Typically, states
are represented as functionsVar → Val from variables to values,
and if we can partition variables into isomorphic sets of program
variables and copies of them, then the basic bijection

(A → V )× (B → V ) ∼= (A + B → V )

can be used to obtain a ghostly decomposition. In fact, we will use
this idea in all of the example analyses defined later.

Given a ghostly decomposition, we obtain arelational mean-
ing 〈〈a〉〉, which is just[[·]] adjusted using the isomorphism of the
decomposition. Formally,

DEFINITION 12 (Relational Semantics).For anya ∈ D], the re-
lation 〈〈a〉〉 ⊆ SC × SC is

〈〈a〉〉 , {(g, p) | 〈g, p〉 ∈ [[a]]}

We are using the notation〈g, p〉 here for an element ofDC cor-
responding to applying the bijection of a ghostly decomposition,
reserving the notation(g, p) for the tuple inSC × SC .

Using this notion we can formally define the requirements for
the well-foundedness check in the algorithm of Fig. 1.

DEFINITION 13 (Well-Foundedness Check).Suppose thatA is an
over-approximation of a programP with ghostly decomposition.
Then awell-foundedness checkis a map

WELLFOUNDED : D] → {true, false}

such that ifWELLFOUNDED(a) then〈〈a〉〉 is a well-founded rela-
tion.

Recall that a relationR is well founded iff there does not exist an
infinite sequencep such that∀i ∈ N. (pi, pi+1) ∈ R. Then a well-
foundedness check must soundly ensure that the relation〈〈a〉〉 on
program states is well founded.

For our variance analysis to work properly it is essential that the
abstract semantics work in a way that is independent of the ghost
state.

DEFINITION 14 (Ghost Independence).Suppose the concrete se-
mantics has a ghostly decomposition. We say that

• a ∈ D] is ghost independentif

(g, p) ∈ 〈〈a〉〉 =⇒ ∀g′. (g′, p) ∈ 〈〈a〉〉
i.e., if the predicate[[a]] is independent of the ghost state. Also,
X ⊆ D] is ghost independent if each element ofX is.

• An over-approximation preserves ghost independenceif
INVARIANCEANALYSIS(P, X) is ghost independent whenever
X ⊆ D] is ghost independent.

The idea here is just that the abstract semantics will ignore the ghost
state and not introduce spurious facts about it.

Curiously, our results do not require that STEP preserves ghost
independence, even though it typically will. Preservation of ghost
independence is needed, technically, only in the statementIAs :=
INVARIANCEANALYSIS(P, I]) in the VARIANCEANALYSIS algo-
rithm; for seeding to work properly we need that all the elements
of Q are ghost independent if all the initial abstract states inI]

are. The formal requirement on the SEED operation, which takes
independence into account, is:

DEFINITION 15 (Seeding).A seeding functionis a map

SEED : D] → D]

such that ifa is ghost independent and(g, p) ∈ 〈〈a〉〉 then(p, p) ∈
〈〈SEED(a)〉〉.

SEED(a) can be thought of as an over-approximation of the di-
agonal relation on program variables ina. That is, we do not re-
quire that SEED exactly copy the state, which would correspond to
SEED(a) = {(p, p)} instead of(p, p) ∈ SEED(a) in the definition.

4.3 Soundness

To establish the soundness result, we fix:

• a concrete semantics with ghostly decomposition;

• an over-approximation that preserves ghost independence, with
a seeding map and sound well-foundedness check;

• a programP and set of initial statesIP ⊆ DC ;

• a finite setI] ⊆ D] of initial abstract states, each of which is
ghost independent, and whereIP ⊆ [[I]]].

THEOREM 1 (Soundness).If VARIANCEANALYSIS(P, L, I]) of
Fig. 1 terminates, forL a finite set of program locations; then upon
termination,LTPreds will be such that for each̀∈ L ands ∈ IP ,
LT (P, L, `, IP ) if LTPreds[`] = true .

As an immediate consequence of Proposition 2 we obtain

COROLLARY 1. SupposeL is a set of cutpoints. Assume that
LTPreds = VARIANCEANALYSIS(P, L, I]). In this caseP ter-
minates if∀` ∈ L.LTPreds[`] = true.

Now we give the proof of the theorem.

Proof: [Theorem 1] Consider̀ ∈ L and supposeLTPreds[`] =
true on termination of VARIANCEANALYSIS. Let O =
ISOLATE(P, L, `) and

IO = {t | ∃s ∈ IP . s −→∗
P t ∧ pc(t) = `} .

We aim to show thatWF(O, `, IO) holds. The theorem follows at
once from this and Proposition 1.

LetTr ` , { (b, c) | ∃〈g, b〉 ∈ IO

〈g, b〉 −→+
O 〈g, c〉 ∧ pc(〈g, c〉) = `}
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Assume that the algorithm in Fig. 1 has terminated and that
LTPreds[`] = true. First, we have a lemma:

If Tr ` is well founded thenWF(O, `, IO) holds

This lemma is immediate from the transition conditions in Defini-
tion 11. So, by the lemma we will be done if we can establish that
Tr ` is well founded. For convenience, we define:

LOCS(`1, `2) , {(s, t) | pc(s) = `1 ∧ pc(t) = `2}
We need to show two things:

1. Wanted:{〈〈r〉〉 ∩ LOCS(`, `) | r ∈ VAs} is a finite set of well-
founded relations.

VAs is clearly finite, as otherwise the algorithm would not
terminate. Therefore we know that there exists a finite dis-
junctively well-founded decomposition of(

S
r∈VAs〈〈r〉〉) ∩

LOCS(`, `) where, for eachr ∈ VAs, WELLFOUNDED(r) =
true. This is due to Definition 13, which tells us that, for each
r ∈ VAs, 〈〈r〉〉 is well-founded.X

2. Wanted:Tr ` ⊆
S

r∈VAs〈〈r〉〉 ∩ LOCS(`, `).

Assume that there exist(b, c) ∈ Tr `. That is: we have some
〈g, b〉 ∈ IO with 〈g, b〉 −→+

O 〈g, c〉 andpc(〈g, c〉) = `. By
over-approximation,〈g, b〉 ∈

S
[[IAs]]. Thus, there exists a

q ∈ IAs such that〈g, b〉 ∈ [[q]]. Since the start states inI]

are ghost independent, and INVARIANCEANALYSIS preserves
ghost independence, we obtain thatq is ghost independent.
We obtain from Definition 15 that(b, b) ∈ 〈〈SEED(q)〉〉. By
ghostly decomposition,〈b, b〉 −→+

O 〈b, c〉, and so by over-
approximation for STEP followed by INVARIANCEANALYSIS,
there existsr ∈ VAs where 〈b, c〉 ∈ [[r]]. By the defin-
ition of 〈〈·〉〉 this means that(b, c) ∈ 〈〈r〉〉. Thus, because
pc(q) = pc(r) = `, Tr ` ⊆

S
r∈VAs〈〈r〉〉 ∩ LOCS(`, `). X

We can now prove thatTr ` is well founded as follows. The two
facts just shown establish thatTr ` ⊆ T1 ∪ · · · ∪ Tn for a finite
collection of well-founded relations given byVAs (note that the
union need not itself be well founded). Further, by the definition of
Tr ` it follows thatTr ` = Tr+

` . So we knowTr+
` ⊆ T1 ∪ · · · ∪Tn

for a finite collection of well-founded relations. By the result of
[37] it follows thatTr ` is well founded. �

We close this section with two remarks on the level of generality
of our formal treatment.

Remark: On Relational Abstract Domains.A “relational ab-
stract domain” is one in which relationships between variables (like
x < y or x = y) can be expressed. Polyhedra and Octagon are
classic examples of relational domains, while the Sign and Interval
domains are considered non-relational. The distinguishing feature
of Sign and Interval is that they arecartesian, in the sense that the
abstract domain tracks the cartesian product of properties of pro-
gram variables ([15], p.10), independently. It has been suggested
that our variance analyses might necessarily rely on having a rela-
tional (or non-cartesian) abstract domain, because in the examples
above we use equalities to record initial values of variables.

But, consider the Sign domain. For each program variablex the
Sign domain can record whetherx’s value is positive, negative, or
zero. If the value cannot be put into one of these categories, it is>.
We can define a seeding function, where SEED(F ) assigns to each
seed variablexs the same abstract value asx. For example, ifF is
positive(x) ∧ negative(y) then SEED(F ) is

positive(x) ∧ negative(y) ∧ positive(xs) ∧ negative(ys)

This seeding function satisfies the requirements of Definition 15.

The Sign domain is an almost useless termination analysis; it
can prove

while(x<0 && k>0) x = x * x + k;

but not a typical loop that increments or decrements a counter. We
have mentioned it only to illustrate the technical point that our
definition of seeding does not rely on being able to specify the
equality between normal and ghost state. In this sense, our formal
treatment is perhaps more general than might at first be expected.

A more significant illustration of this point will be given in
Section 6.

Remark: On Relational Analyses. A “relational analysis” is one
where an abstract element over-approximates a relation between
states (the transition relation) rather than a set of individual states.
This notion is often used in interprocedural analysis, for example
in the Symbolic Relational Separate Analysis of [21]. (This sense
of “relational” is not to be confused with that in “relational abstract
domain”; the same word is used for distinct purposes in the pro-
gram analysis literature.)

It has been suggested [17] that our use of ghost state above is a
way to construct a relational analysis from a standard one (where
states are over-approximated). Indeed, it would be interesting to
rework our theory using a formulation of relational analyses on a
level of generality comparable to standard abstract interpretation
where, say, the meaning map had type[[·]] : D] → 2DC×DC

rather than[[·]] : D] → 2DC . In this sense, our formal treatment
here is probably not as general as possible; we plan to investigate
this generalization in the future. Among other things, such a for-
mulation should allow us to use cleverer representations of (over-
approximations of) relations than enabled by our use of ghost state;
see [21], Section 9, for pointers to several such representations.

5. Variance analyses for numerical domains
The pieces come together in this section. By instantiating VARI-
ANCEANALYSIS with several numerical abstract domains, we ob-
tain induced variance analyses and compare them to existing termi-
nation proof tools on benchmarks. As the results in Fig. 4 show,
the induced variance analyses yield state-of-the-art termination
provers. The two domains used, Octagon [34] and Polyhedra [23],
where chosen because they represent two disparate points in the
cost/precision spectrum of abstract arithmetic domains.

Instances ofSEED andWELL FOUNDED for numerical domains.
Before we begin, we must be clear about the domain of states.
We presume that we are given a fixed finite setVar of variables
with pc ∈ Var.4 Concrete states are defined to be mappings from
variables to valuesDC , Var → V that (for simplicity of the
presentation) are limited to a set of numerical valuesV (whereV
could be the integers, the real numbers, etc.). The abstract states
D] are defined to be conjunctions of linear inequalities overV. We
assume that each abstract state includes a unique equalitypc = c
for a fixed program location constantc. This gives us the way
to define the projectionpc] required by an over-approximation
(Definition 10).

Next, in order to define seeding we presume that the variables
in Var are of two kinds,program variablesandghost variables.
The former may be referenced in a program, while the latter can be
referenced in abstract states but not in programs themselves. The
programs are justgoto programs with assignment and conditional
branching based on expressions with Boolean type (represented in
flow-graph form as in Definition 2).

4 For simplicity we are ignoring the issue of variables inF that are not in-
scope at certain program locations. This can be handled, but at the expense
of considerable complexity in the formulation.
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We assume a disjoint partitioningGVar ∪ PVar of the set of
variablesVar wherepc ∈ PVar. We presume a bijective mapping
ρ : PVar → GVar that associates ghost variables to program
variables. This furnishes the isomorphisms

(GVar → V)× (PVar → V)
∼= (PVar → V)× (PVar → V) ∼= Var → V

from which we obtain the bijection〈·, ·〉 : SC × SC → DC

required by Definition 11 (whereSC = PVar → V andDC =
Var → V).

At this point we have everything that is needed to define the
SEED and WELLFOUNDED functions:

SEED(F ) , F ∧
V

v∈PVar{v = ρ(v)}
WELLFOUNDED(F ) , WFCHECK(ρ(PVar), PVar, F )

SEED usesρ to add equalities between ghost and program vari-
ables. The well-foundedness check calls either RANK FINDER [36]
or POLYRANK [6, 7], which take an input formula and then report
whether or not the formula denotes a well-founded relation.

We will not give the explicit definitions of the semantics
of concrete programs, or of the corresponding definitions of
INVARIANCEANALYSIS and STEP on the particular abstract do-
mains, referring instead to [23, 34]. The concrete dynamic seman-
tics −→P satisfies the required conditions of Ghostly Decompo-
sition (Definition 11) because ghost variables do not appear in
programs. Because these variables are never modified by the pro-
gram the functions STEP and INVARIANCEANALYSIS will pre-
serve ghost independence of abstract states.

Furthermore, the seeding function in this section satisfies Defin-
ition 15. Also, WELLFOUNDED satisfies Definition 13 as a result of
soundness of the well-foundedness checker (RANK FINDER [36] or
POLYRANK [6, 7]). Thus we have given the definitions needed to
obtain a specific variance analysis as an instance of the framework
in the previous section.

Example. Let PVar = {x, y, pc}, GVar = {xs, ys, pcs}, and
ρ = {(x, xs), (pc, pcs), (y, ys)} is a bijective mapping. Lets be
the Octagon statex < y ∧ pc = 10. Thus,

SEED(s) = x < y ∧ pc = 10 ∧ x = xs ∧ pc = pcs ∧ y = ys

If we execute the command sequence

x := x + 1; assume(x < y); goto 10

from s, the abstract transfer function should produce a stateq:

q , x < y ∧ pc = 10 ∧ x ≥ xs + 1 ∧ pcs = pc ∧ ys = y

〈〈q〉〉 is a well-founded relation becausex is increasing while being
less thany, andy is unchanging;x cannot increase forever and
yet remain less than an unchangingy. Indeed, when RANK FINDER
is passed this formula with the ghost and program variables as
the “from” and “to” variables, it reports that it can find a ranking
function—confirming that〈〈q〉〉 is a well-founded relation.

Experiments. In order to evaluate the utility of our approach for
arithmetic domains we have instantiated it using analyses based
on the Octagon and Polyhedra domains and then compared these
analyses to several known termination tools. The tools used in the
experiments are as follows:

O) OCTATERM is the variance analysis induced by OCTANAL [34]
composed with a post-analysis phase (see below). OCTANAL
is included in the Octagon domain library distribution. During
these experiments OCTATERM was configured to return “Ter-
minating” in the case that each of the variance assertions in-
ferred entailed their corresponding local termination predicate.
The WFCHECK operation was based on RANK FINDER.

P) POLYTERM is the variance analysis similarly induced from an
invariance analysis POLY based on the New Polka Polyhedra
library [30].5

PR) A script suggested in [5] that calls the tools described in
the POLYRANK distribution [6, 7] with increasingly expensive
command-line options.

T) TERMINATOR [14].

These tools, except for TERMINATOR, were all run on a 2GHz
AMD64 processor using Linux 2.6.16. TERMINATOR was executed
on a 3GHz Pentium 4 using Windows XP SP2. Using different ma-
chines is unfortunate but somewhat unavoidable due to constraints
on software library dependencies, etc. Note, however, that TER-
MINATOR running on the faster machine was still slower overall,
so the qualitative results are meaningful. In any case, the running
times are somewhat incomparable since on failed proofs TERMI-
NATOR produces a counterexample path, OCTATERM and POLY-
TERM give a suspect pair of states, while POLYRANK gives no
information. Also, note that the script used to call POLYRANK will
never terminate for a divergent input program; the tool may quickly
fail for a given set of command-line options, but the script will sim-
ply try increasingly expensive options forever.

Fig. 4 contains the results from the experiments performed with
these provers. For example, Fig. 4(a) shows the outcome of the
provers on example programs included in the OCTANAL distrib-
ution. Example 3 is an abstracted version of heapsort, and Example
4 of bubblesort. In this case OCTATERM is the clear winner of the
tools. POLYRANK performs poorly on these cases due to the fact
that any fully-general translation scheme from programs with full-
fledged control-flow graphs to POLYRANK ’s input format will at
times confuse the domain-specific rank-function search heuristics
used in POLYRANK .

Fig. 4(b) contains the results from experiments with the 4 tools
on examples from the POLYRANK distribution.6 The examples can
be characterized as small but famously difficult (e.g.McCarthy’s 91
function). We can see that, in these cases, neither TERMINATOR nor
the induced provers can beat POLYRANK ’s hand-crafted heuristics.
POLYRANK is designed to support very hard but also carefully
expressed examples. In this case each of these examples from
the POLYRANK distribution are written such that POLYRANK ’s
heuristics find a termination argument.

Fig. 4(c) contains the results of experiments on fragments of
Windows device drivers. These examples are small because we cur-
rently must hand-translate them before applying all of the tools but
TERMINATOR. In this case OCTATERM again beats the competi-
tion. However, we should keep in mind that the examples from this
suite that were passed to TERMINATOR contained pointer aliasing,
whereas aliasing was removed by hand in the translations used with
POLYRANK , OCTATERM and POLYTERM.

From these experiments we can see that the technique of in-
ducing variance analyses with VARIANCEANALYSIS is promising.
For programs of medium difficulty (i.e. Fig. 4(a) and Fig. 4(c)),
OCTATERM is many orders of magnitude faster than the existing
program termination tools for imperative programs.

Remark: On Octagon versus Polyhedra for variance analysis.
Example 1 from Fig. 4(b) demonstrates that, by moving to a more
precise abstract domain (i.e. moving from Octagon to Polyhedra),
we get a more powerful induced variance analysis. For another

5 POLY uses the same code base as OCTANAL but calls an OCaml module
for interfacing with New Polka, provided with the OCTANAL distribution.
6 Note also that there is no benchmark number 5 in the original distribution.
We have used the same numbering scheme as in the distribution so as to
avoid confusion.
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1 2 3 4 5 6

O 0.11 X 0.08 X 6.03 X 1.02 X 0.16 X 0.76 X
P 1.40 X 1.30 X 10.90 X 2.12 X 1.80 X 1.89 X

PR 0.02 X 0.01 X T/O - T/O - T/O - T/O -
T 6.31 X 4.93 X T/O - T/O - 33.24 X 3.98 X

(a) Results from experiments with termination tools on arithmetic examples from the Octagon
Library distribution.

1 2 3 4 6 7 8 9 10 11 12

O 0.30 † 0.05 † 0.11 † 0.50 † 0.10 † 0.17 † 0.16 † 0.12 † 0.35 † 0.86 † 0.12 †
P 1.42 X 0.82 X 1.06 † 2.29 † 2.61 † 1.28 † 0.24 † 1.36 X 1.69 † 1.56 † 1.05 †

PR 0.21 X 0.13 X 0.44 X 1.62 X 3.88 X 0.11 X 2.02 X 1.33 X 13.34 X 174.55 X 0.15 X
T 435.23 X 61.15 X T/O - T/O - 75.33 X T/O - T/O - T/O - T/O - T/O - 10.31 †

(b) Results from experiments with termination tools on arithmetic examples from the POLYRANK
distribution.

1 2 3 4 5 6 7 8 9 10

O 1.42 X 1.67 � 0.47 � 0.18 X 0.06 X 0.53 X 0.50 X 0.32 X 0.14 � 0.17 X
P 4.66 X 6.35 � 1.48 � 1.10 X 1.30 X 1.60 X 2.65 X 1.89 X 2.42 � 1.27 X

PR T/O - T/O - T/O - T/O - 0.10 X T/O - T/O - T/O - T/O - 0.31 X
T 10.22 X 31.51 � 20.65 � 4.05 X 12.63 X 67.11 X 298.45 X 444.78 X T/O - 55.28 X

(c) Results from experiments with termination tools on small arithmetic examples taken from Win-
dows device drivers. Note that the examples are small as they must currently be hand-translated
for the three tools that do not accept C syntax.

Figure 4. Experiments with 4 termination provers/analyses.O is used to represent OCTATERM, an Octagon-based variance analysis.P is
POLYTERM, a Polyhedra-based variance analysis. ThePR rows represent the results of POLYRANK [5]. T represents TERMINATOR [14].
Times are measured in seconds. The timeout threshold was set to 500s.X=“a proof was found”.†=“false counterexample returned”. T/O
= “timeout”.�=“termination bug found”. Note that pointers and aliasing from the device driver examples were removed by a careful hand
translation when passed to the toolsO, P, andPR.

example of how the Polyhedra-based variance analysis is more
precise, consider the following program fragment:

while(x+y>z) {
if(nondet()) {

x=x-1;
} else {

if(nondet()) {
y=y-1;

} else {
z=z+1;

}
}

}

POLYTERM can prove that this program is terminating when ex-
ecution starts in a state where bothx andy are larger thanz, but
OCTATERM reports a false bug because the Octagon domain only
tracks two-variable inequalities.

Remark: On Disjunction. As mentioned above, if the underly-
ing abstract domain of an induced termination analyzer does not
support some level of disjunction, then the termination analysis re-
sults are likely to be quite imprecise. Because disjunctive comple-
tion is expensive (exponential) and there is no canonical solution,
abstract orders and widening operations must be tailored for the ap-
plication. For our present empirical evaluation we use an extraction
method after the fixed-point analysis has been performed in order to
find disjunctive invariance/variance assertions. The precise degree
of dependence that termination proofs have on disjunctive comple-
tion, or an approximation thereof, is an important direction for fu-
ture work that we hope the existence of the VARIANCEANALYSIS
algorithm will catalyze.

6. Variance analyses from shape analyses
SONAR [3] is an invariance analysis tool which tracks the sizes of
summarized or abstracted heap structures. SONAR was first used in
the MUTANT termination prover, which implements an algorithm
from which that in Fig. 1 is generalized. MUTANT has been used to
prove the termination of Windows OS device driver dispatch rou-
tines whose termination depends on arguments about the changing
shape of the heap during the dispatch routine’s execution. Due to
isolation, SONAR’s induced variance analysis (i.e., the analysis re-
sulting from SONAR and Fig. 1) is more powerful than the original
MUTANT. As an example consider the following loop where we as-
sume, before entering into the loop, thatx is a pointer to a circular
list:

1 z = x;
2 do {
3 z = z->next;
4 y = z;
5 while (y != x) {
6 y = y->next;
7 }
8 } while (z != x)

SONARTERM can prove this example terminating, while MUTANT
cannot.

SONARTERM is an interesting case of an induced variance
analysis, as it demonstrates how SEED does not need to be the most
precise approximation of the diagonal relation, and it is also an ex-
ample of how WELLFOUNDED can do additional abstraction on an
already abstract state before attempting to prove it well-founded.

Elements of SONAR’s abstract domainD] are of the formΠ∧Σ,
whereΣ is a spatial formula represented as a∗-conjoined set of
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possibly inductive predicates expressed in separation logic [40],
and Π is a conjunction of arithmetic inequalities over variables
DVar that describe the number of inductive unwindings (depth)
of the inductive predicates inΣ. SONAR is path-sensitive in a way
that can be expressed as a control flow based trace partitioning [33]
where the analyzer dynamically computes a partition by merging
partitions when the reachable states can still be precisely repre-
sented. Alternately, this trace partitioning can be seen as a dynami-
cally computed control-flow graph elaborationa la [41]. As for the
numerical domains, in order to define the projectionpc] required
by an over-approximation (Definition 10), we assume that theΠ
part of each abstract state includes a unique equalitypc = c for a
fixed program location constantc.

Before presenting the details of the SONAR instantiation we
begin with a small example. Consider an abstract states such that

s , lsk(x, y) ∗ lsk′
(y, x) ∧ k>0 ∧ k′>0

This is an invariant of the loop at line5 of the example above and,
informally speaking,s states thatx is a pointer to a linked list
segment such that following the trail of pointers in thenext fields
for k steps (for somek) will lead to a node at addressy. Note that,
if we follow thenext fields fromy (for k′ steps), we will get back
to the original node atx. Additionally, due to the∗, we know that
there is no aliasing between the first and second lists: they occupy
disjoint memory. In this case SEED(s) equals:

lsk(x, y) ∗ lsk′
(y, x) ∧ k>0 ∧ k′>0 ∧ k=ks ∧ k′=k′s

Note that we are only copying arithmetic variables, not pointers.
If we symbolically execute this new state through the instruction
sequencey = y->next; assume(y!=x); then this could lead to
the symbolic states′ (amongst others):

s′ , lsk(x, y) ∗ lsk′
(y, x)∧ ks>0∧ k′>0∧ k=ks+1∧ k′=k′s−1

WELLFOUNDED(s′) will project a relation between states(ks, k
′
s)

and(k, k′) such that

ks>0 ∧ k′>0 ∧ k=ks+1 ∧ k′=k′s−1

This relation can be proved well-founded by both RANK FINDER
and POLYRANK .

Instance ofSEED and WELL FOUNDED. For SONARTERM, we
assume a partitioningGVar ∪ PVar of the set of variablesVar,
and assume a set of depth variablesDVar ⊂ PVar. We assume
thatpc ∈ PVar r DVar, and that the program neither reads from
nor writes to the ghost variablesGVar. The set of concrete program
statesDC is then defined:

GStack , GVar → Val PStack , PVar → Val

Stack , Var → Val Heap , Loc ⇀fin Val

GState , GStack×Heap PState , PStack×Heap

DC , Stack×Heap

We assume a bijective mappingρ : PVar → GVar, thus giving us
an isomorphism

GStack× PStack ∼= PStack× PStack ∼= Stack

which then yields isomorphisms

GState× PState ∼= PState× PState ∼= DC

to obtain〈·, ·〉 : SP × SP → DC (whereSP = PState), the
bijection required by a Ghostly Decomposition (Definition 11).

The following four equations define an instantiation for the
operations required to induce a variance analysis from SONAR:

SEED(Π ∧ Σ) , (Π ∧ Σ ∧
V

v∈fDV(Π∧Σ){v = ρ(v)})
SEED(>) , >

WELLFOUNDED(Π ∧ Σ) , WFCHECK(ρ(DVar), DVar, Π)

WELLFOUNDED(>) , false

wherefDV(Π ∧ Σ) denotes the set of depth variables appearing
in Π ∧ Σ, and WFCHECK could be tools such as POLYRANK
or RANK FINDER. The domain element> is used in SONAR to
represent the case where memory-safety could not be established
by the abstract interpretation. Notice that these definitions ignore
the spatial partΣ, and treat only the depth variables. In particular,
WELLFOUNDED is constant in the spatial part, and SEED plants no
information about the spatial part. In this way, SEED is not the best
approximation of the diagonal relation, and so is an example that
exercises the looseness of Definition 15.

The bijection for ghostly decomposition and WELLFOUNDED/
SEED operations just defined are the necessary additions to the
SONAR invariance analysis to obtain the SONARTERM variance
analysis. We refer to [3] for the remaining details of the SONAR
analysis.

7. Related work
A number of termination proof methods and tools have been re-
ported in the literature. Examples include the size-change prin-
ciple for purely functional programs (e.g. [31]), the dependency
pairs approach for term-rewrite systems (e.g. [26]), rank-function
synthesis for imperative programs with linear arithmetic assign-
ments (e.g.[6, 9, 10, 42, 38]) and even non-linear imperative pro-
grams [16]. Many of these tools and techniques use specific and
fixed abstractions. The size-change principle, for example, builds
an analysis around the program’s call-graph. Rank-function syn-
thesis techniques, for example, support limited control-flow graph
structures (e.g.single unnested while loops, perhaps without con-
ditionals), meaning that support for general purpose programs re-
quires an abstraction before rank synthesis can be performed. The
work presented here is not tied to a fixed abstraction.

This paper generalizes the previous work on MUTANT in [3].
Thus, given that it is a generalization, some overlap in contri-
butions is to be expected. SONAR’s induced variance analysis,
SONARTERM, is unique to this paper and is also more accurate
than MUTANT. There, we described a specific termination check-
ing tool, concentrating on a particular domain (shape analysis) and
focusing much of our attention to the underlying invariance analy-
sis used (SONAR). Here, we introduce the notion of variance analy-
sis, describe a general method of implementing the analysis with
invariance analyses, show the general algorithm at work in several
contexts, and give a proof of the soundness of parameterized vari-
ance analyses. These contributions are all unique to the new work.

The work in this paper builds on the fundamental result of [37]
on disjunctively well-founded relations, which shows that a relation
Rel is well-founded if and only if its transitive closureRel+ is a
subset of a finite unionT1 ∪ · · · ∪ Tn of well-founded relations
(called a transition invariant). The result in [37] led to a method of
constructing termination arguments using counterexample-guided
refinement [12]. The idea is that when an inclusion checkR+ ⊆
T1 ∪ · · · ∪ Ti fails (so that we do not have an over-approximation),
a counterexample can be used to produce a new well-founded
relation Ti+1. Then if the inclusionR+ ⊆ T1 ∪ · · · ∪ Ti ∪
Ti+1 holds, well-foundedness ofR has been established; if not the
abstraction can be refined again using a counterexample.

TERMINATOR is a symbolic model checker for termination and
liveness properties that is based on this idea, as described in [11,
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13, 14]. The difficulty in TERMINATOR is that checking the validity
of the termination argument (i.e. checking the invariance property
that proves the validity of the termination argument) is extremely
expensive. This was shown in Section 5, which presents the first
known experimental evaluation of tools like TERMINATOR and
POLYRANK .

In contrast, here we directly compute an over-approximation,
T1 ∪ · · · ∪ Tn, where the inclusionR+ ⊆ T1 ∪ · · · ∪ Tn holds by
construction. Unlike in TERMINATOR, theTi are not guaranteed to
be well-founded: we have to check that. As we have seen, this has
some advantages as regards speed and the ability to tune precision.

The work here takes the opposite perspective from TERMINA-
TOR. We show how an over-approximatingT1 ∪ · · · ∪ Tn can
quickly be computed using an off-the-shelf abstract interpretation.
We do not need to check the inclusion, as TERMINATOR must,
because it holds by construction. But we must still check that
eachTi is well-founded. So, although justified by the same re-
sult on disjunctively well-founded relations, we use of this result
in a fundamentally different way than does TERMINATOR: we get
over-approximation by construction, but have to check for well-
foundedness, while TERMINATOR’s candidate termination argu-
mentsT1∪· · ·∪Ti are disjunctively well-founded by construction,
but it may not be an over-approximation. Our technique is not de-
pendent on counterexample-driven refinement or on predicate ab-
straction.

The work in [37] uses the result on disjunctively well-founded
relations to justify several inference rules fortransition invariants;
a transition invariant is an over-approximation of the transition
relation of a program, when restricted to reachable states. It would
be straightforward to modify the VARIANCEANALYSIS algorithm
to compute transition invariants. As it stands, given a program
with transition relationR, our variance assertions can be seen
as transition invariants for the transitive closureR+, restricted
to where the start and end states of the transition relation are
at the same program location. They are what we need to reason
about whether a location is visited infinitely often, and to formulate
the more refined local termination predicates which give added
modularity to our analysis.

The notions of seeding and ghost variables are basic and have
been used many times [3, 4, 16, 32, 39].

8. Conclusion
We have introduced the notion of a variance assertion together with
a class of tools called variance analyses. Furthermore, we have
developed a generic method of inducing variance analyses from
invariance analyses, and shown how several analyses developed
through the method lead to termination provers that are competitive
with known termination provers.

The proposed approach has several unique advantages over
known existing approaches. For example: The induced variance
analyses reuse the machinery of the underlying invariance analysis
to quickly and automatically find a (disjunctive) candidate termina-
tion argument. The argument itself can often be expressed using a
less precise, and thus more efficient, domain—e.g.Octagon versus
Polyhedra as in Section 2.

Furthermore, the induced variance analyses are trulyanalyses.
That is, like invariance analyses infer invariance assertions, the
induced variance analyses infer variance assertions. As invariance
assertions can be used to prove safety properties (amongst other
uses), variance assertions are useful when proving termination and
probably other liveness properties.

For example, if termination cannot be proved directly by prov-
ing well-foundedness of each disjunct in the VARIANCEANALYSIS
algorithm, the well-founded subset of the variance assertion could
be passed to a tool like TERMINATOR which could directly use it

during further attempts to prove termination or other liveness prop-
erties. This would undoubtedly lead to faster termination provers,
with at least as much precision as is now possible. A more inter-
esting question is:Can the combination of approaches prove new
programs terminating that cannot be proved terminating with the
approaches separately?This arises from the fact that TERMINA-
TOR sometimes suffers in cases where the loop variables are ini-
tialized to constant values (e.g.for(i=0;i<N;i++);). In this case
TERMINATOR might (as it is based on predicate abstraction [27])
produce an infinite number of predicates (i==0, i==1, etc). TER-
MINATOR has heuristics that attempt to mitigate this issue, but these
techniques often fail. OCTATERM and POLYTERM, for example,
do not suffer from this problem. Thus, we might be able to use the
information from failed runs of OCTATERM to help TERMINATOR
overcome its limitations in contexts like this.

Finally, liveness properties (including termination) for finite-
state systems amount to invariance properties. All known model
checkers that support liveness properties for finite-state systems
make use of this fact. Biereet al. [4] go so far as to simply convert
the liveness checking problem for finite-state systems into safety.
Thus, liveness and termination only become distinct from safety
in the context of infinite-state systems. It is known, though, that
liveness properties for infinite state systems can be reduced to
fair termination (see [11, 43]). It therefore seems likely that the
ideas in this paper could be used for liveness analyses other than
termination.

The variance analyses we have given as instances of this paper’s
proposed algorithm are built from invariance analyses that are con-
cerned with established ingredients of termination provers: linear
arithmetic and size of data structures. However, there exist many
invariance analyses built on a broad spectrum of abstractions. It
will be exciting to see what kinds of variance analyzers will come
of combining these abstract domains with VARIANCEANALYSIS.
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