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Abstract the user (or algorithm calling the invariance analysis) might try to

refine the abstraction. For example, if the tool is based on abstract
interpretation they may choose to improve the abstraction by delay-
r{ng the widening operation [28], using dynamic partitioning [33],
employing a different abstract domain, etc.

The aim of this paper is to develop an analogous set of tools
for program termination and liveness: we introduce a class of tools
_called variance analysesvhich infer assertions, calledariance
assertions that hold between any state at a locatiband any

An invariance assertion for a program locatibis a statement that
always holds af during execution of the program. Program invari-
ance analyses infer invariance assertions that can be useful whe
trying to prove safety properties. We use the temiance asser-
tion to mean a statement that holds between any statamd any
previous state that was also/atThis paper is concerned with the
development of analyses for variance assertions and their applica

tion to proving termination and liveness properties. We describe . : h
P 9 brop previous state that was also at locatfohlote that a single variance

a method of constructing program variance analyses from invari- ” itself be a disiunction. W t . thod
ance analyses. If we change the underlying invariance analysis, we2SSErtion may itseff be a disjunction. We present a generic metho

get a different variance analysis. We describe several applicationsOf cr?nstruptlng varl?nqe analyses frotm Tvahrlzince zn'”alyseg. For
of the method, including variance analyses using linear arithmetic €3¢ mvananlce_ana ysis, we can construct what we caidtsce

and shape analysis. Using experimental results we demonstrate thaarance analysis -, . .
these variance analyses give rise to a new breed of termination This paper also introduces a condition on variance assertions

provers which are competitive with and sometimes better than to- called tlhelocal termination predlcate_ln this work, we show how
day’s state-of-the-art termination provers the variance assertions inferred during our analysis can be used to

establish local termination predicates. If this predicate can be es-
Categories and Subject DescriptorsD.2.4 [Software Engineer-  tablished for each variance assertion inferred for a program, whole
ing]: Software/Program Verification; F.3.L¢gics and Meanings  program termination has been proved; the correctness of this step
of Program$: Specifying and Verifying and Reasoning about Pro- relies on a result from [37] omlisjunctively well-founded over-
grams approximationsAnalogously to invariance analysis, even if the in-
General Terms Verification, Reliability, Languages _duced v_ariance analysis fails to prove whole program termination,
it can still produce useful information. If the predicate can be estab-
Keywords Formal Verification, Software Model Checking, Pro-  lished only for some subset of the variance assertions, this induces

gram Analysis, Liveness, Termination a different liveness property that holds of the program. Moreover,
) the information inferred can be used by other termination provers
1. Introduction based on disjunctive well-foundedness, suchBsMINATOR [14].

If the underlying invariance analysis is based on abstract interpre-
tation, the user or algorithm could use the same abstraction refine-
ment techniques that are available for invariance analyses.

In this paper we illustrate the utility of our approach with three
induced variance analyses. We construct a variance analysis for
arithmetic programs based on the Octagon abstract domain [34].
The invariance analysis used as input to our algorithm is composed
of a standard analysis based on Octagon, and a post-analysis phase
that recovers some disjunctive information. This gives rise to a fast
and yet surprisingly accurate termination prover. We similarly con-
struct an induced variance analysis based on the domain of Polyhe-
dra [23]. Finally, we show that an induced variance analysis based
Permission to make digital or hard copies of all or part of this work for personal or on the separation domain [24].|S an. |mproyement on a termination
classroom use is granted without fee provided that copies are not made or distributed prover that Wa_s recently described in the Ilterat_ure [3] These _three
for profit or commercial advantage and that copies bear this notice and the full citation abstract domains were chosen because of their relative position on
on the first page. To copy otherwise, to republish, to post on servers or to redistribute the spectrum of domains: Octagon is designed to be extremely fast,
to lists, requires prior specific permission andjor a fee. at the expense of accuracy, whereas Polyhedra and the separation

POPL’07 January 17-19, 2007, Nice, France. domain are more powerful at the cost of speed
Copyright(® 2007 ACM 1-59593-575-4/07/0001. . . $5.00. P peed.

An invariance analysisakes in a program as input and infers a set
of possibly disjunctive invariance assertioak(a. invariants) that

is indexed by program locations. Each locatibim the program

has an invariant that always holds during any executiagh @hese
invariants can serve many purposes. They might be used directly
to prove safety properties of programs. Or they might be used in-
directly, for example, to aid the construction of abstract transition
relations during symbolic software model checking [29]. If a de-
sired safety property is not directly provable from a given invariant,



01 VARIANCEANALYSIS(P, L, I*) {

02 IAs:= INVARIANCEANALYSIS(P, I*)

03 foreach? e L {

04 LTPreds[{] := true

05 O := ISOLATE(P, L, ¢)

06 foreachq € IAs such thapc(q) = £ {

07 VAs := INVARIANCEANALYSIS(O, STEP(O, {SEED(q) }))
08 foreachr € VAs {

09 if pc(r) = £ A =WELLFOUNDED(r) {
10 LTPreds[(] := false

11 }

12 }

13 }

14

15 return LTPreds

16}

Figure 1. Parameterized variance analysis algorithfh.is the
program to be analyzed, the set of program locatidnss a
set of cutpoints, and* is the set of initial states. To instan-

4. The analysis then takes each elementlefs and uses the
WELLFOUNDED operation in order to establish the validity
of a set of local termination predicates, stored in an array
LTPreds. A location ¢'s local termination predicate holds if
LTPreds[l] = true.

The reason we take a single step before re-running the invariance
calculation is that we are going to leverage the result of [37] on
disjunctive well-foundedness, which connects well-foundedness of
a relation to over-approximation of its non-reflexive transitive clo-
sure. Without $SEP we would get the reflexive transitive closure
instead.

In general,VAs, IAs andI* in this algorithm might be (finite)
sets of abstract elements, rather than singletons. We regard these
sets as disjunctions and, in particular, if a variance assertion at
¢ is the disjunction of multiple elements dfAs, then/’s local
termination lemma holds only in the case thaEM/FOUNDED
returns true for each disjunct.

Although we regard each set as a disjunction, we are not insist-

tiate the variance analysis one must fix the implementations of ing that our abstract domains are closed under disjunctive comple-

INVARIANCEANALYSIS, STEP, SEED and WELLFOUNDED.

tion [19]. INVARIANCEANALYSIS might even return just a single
abstract element, or it might return several without computing the
entire disjunctive completion; we might employ techniques such as

In their own right each of these induced variance analyses is in [33, 41] to efficiently approximate disjunctive completion. But,

on the leading edge in the area of automatic termination proving.

the decision of how much disjunction is present is represented in

For example, in some cases the Octagon-based tool is the fastesf1€ iNPuts SEPand INVARIANCEANALYSIS, and is not part of the
known termination prover. But the more important point is that YARIANCEANALYSIS algorithm.

these variance analyses are not specially-designed: their power

is determined almost exclusively by the power of the underlying
invariance analysis.

2. Inducing invariance analyses

In this section we informally introduce the basic ideas behind our
method. Later, in Sections 3 and 4, we will formally define the
components in the algorithm, and prove its soundness.

Fig. 1 contains our analysis algorithm. To instantiate the analy-
sis to a particular domain, we must provide implementations for the
following components:

¢ INVARIANCEANALYSIS: The underlying invariance analysis.

e STEP: A single-step function overNVARIANCEANALYSIS'S
abstract domain.

e SEED: An additional operation on elements of the abstract do-
main (Definition 15 in Section 4).

e WELLFOUNDED: An additional operation on elements of the
abstract domain (Definition 13 in Section 4).

The implementations of NVARIANCEANALYSIS and STEP are
given by the underlying invariance analysis, whereas the imple-
mentations of 8ED and WeELL FOUNDED must usually be defined
(though they are not difficult to do so in practice).

When instantiated with the implementations afe®, WELL-
FOUNDED, etc. this algorithm performs the following steps:

1. It first runs the invariance analysis, computing a set of invari-
ance assertiongAs.

2. Each elemeng (from IAs) is converted into a binary relation

via the SEED operation.
. The algorithm then re-runs the invariance analysis from the

For our experiments with numerical domains, we fitted them
with a post-analysis to extract disjunctive information from oth-
erwise conjunctive domains. That is, the invariance analyses used
by the VARIANCEANALYSIS algorithm are composed of the stan-
dard numerical domain analysis together with a method of disjunc-
tion extraction. On the other hand, for our shape analysis instantia-
tion no pre-fitting is required because the abstract domain explicitly
uses disjunction (Section 6).
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Consider the small program fragment in Fig. 2, whesadet ()
represents non-deterministic choice. In this section we will use this
program while stepping through theARIANCEANALYSIS algo-
rithm. We will assume that our underlying invariance analysis is
based on the Octagon domain, which can express conjunctions of
inequalities of the formtx + +y < ¢ for variablesz andy and
constant.

Note that during this example we will associate invariance as-
sertions and variance assertions with line numbers. We will say that
an assertion holds at linif and only if it is always valid athe be-
ginningof the line, before executing the code contained at that line.
Furthermore, we will choose a set of program location cutpoints
to be the first basic block of a loop’s body: = {82,83,85}.
Location82 is the cutpoint for the loop contained in lin8%-91,
location 83 is the cutpoint for the loop contained in lin88-90,
and85 is the cutpoint for the loop within line$4-86.

Given L, our parameterized variance analysis attempts to estab-
lish the validity of a local termination predicate for each location
¢ € L, when the progran® is run from starting states satisfying
input conditionI®.

Note that while the outermost loop in Fig. 2 does not guarantee
termination, so long as execution remains within the loop starting

lllustrative example

seeded state after a single step of execution to compute a fixedat location82, it is not possible for the loop in line82-90 to

point over variance assertiong4 s. That is, during this step the

visit location 83 infinitely often. In this example we will show

invariance analysis computes an approximation (represented ashow VARIANCEANALYSIS is able to prove a more local property

a binary relation on states) of the behavior of the loop.

at location83:



81 while (nondet()) {

82 while (x>a && y>b) {
83 if (nondet()) {
84 do {

85 x=x-1;
86 } while (x>10);
87 } else {

88 y=y -1

89 }

90 }

91 }

Figure 2. Example program fragment.

LT (P, L,83,1%): Line 83 is visited infinitely often only in the
case that the program’s execution exits the loop contained
in lines 82 to 90 infinitely often.

The formal definition of 7 (P, L, ¢, %), the local termination
predicate at, will be given later (Definition 8 in Section 3).

Although we will not do so in this example ARIANCEANALY -
siswould also attempt to establish local termination predicates for
the remaining cutpoints:

LT (P, L,82,I"): Line 82 is visited infinitely often only in the
case that the program’s execution exits the loop contained
in lines81 to 91 infinitely often.

LT (P, L,85,I%): Line 85 is visited infinitely often only in the
case that the program’s execution exits the loop contained
in lines84 to 86 infinitely often.

Because the outer loop is not terminatingyRYANCEANALYSIS
would fail to prove£T (P, L, 82, I*). As for 85, it would succeed
to proveL7 (P, L, 85, I*).

Isolation (Line 5 of Fig. 1). The next thing we do, for location
83, is “isolate” the smallest strongly-connected subgraphPisf
control-flow graph containing locatio83, subject to some con-
ditions involving the set of locationd = {82,83,85}, defined
formally in Section 3. Concretely, from the overall progrdtwe
construct a new prograi®, which is the same a® with the ex-
ception that the statement at lifi@ is now:

90 }; assume(false);

Because of thiassume statement, executions that exit the loop are
not considered. Furthermorgg in the isolated program’s initial
state will be83. Together, these two changes restrict execution to
stay within the loop.

This isolation step gives us modularity for analyzing inner
loops. It allows us to establish a local termination predicate for
O even when it is nested within another lofthat diverges. Con-
cretely, isolation will eliminate executions which exit or enter the
loop.

Inferring variance assertions (Lines 6 and 7 of Fig. 1). From

this point on we will use our invariance analysis to reason about the
isolated subprogram rather than the original loop.+eto denote

the transition relation for the isolated subprogr@mWe then take

all of the disjuncts in the invariance assertion at loca&idiin this
case there is only onéAss) and convert them into binary relations
from states to states:

SEED(IAs3) = (pc =83 Apcs =83 Az >a+1Ay>b+1
Nxs=xANys =y Aas=aAbs=Db)

SEED(IAs3) is, of course, just a state that references variables not

We are using a program with nested loops here to illustrate the ysed in the program—these variables can be thought of as logical

modularity afforded by our local termination predicates: even if the
inner loops and outer context are diverging, this will not stop us
from proving the local termination predicate at locat&h That is

to say: the termination of the innermost loop beginning at $ite
does not affect our predicate. We could replace #i6ie

86
with
86

and still establishCT (P, L, 83, I*). However, LT (P, L, 85, I*)
would not hold in this case.

} while (x>10);

} while (nondet());

Invariance analysis (Line 2 of Fig. 1). We start by running an

constants. However, in another senseg8(1Ass) can be thought
of as a binary relation on program states:

{(s,) | s(pc) = t(pc) = 83
A s(x) = t(x)
A s(y) = t(y)
A s(a) =t(a)
A s(b) = t(b)
A t(x) >t(a)+1
AUy =) +1 )

Notice that we're using: s to represent the value &fin s, andx to
represent the value afin t. That is,s gives values to the variables

invariance analysis using the Octagon domain (possibly with a {PCs; Ts, s, as, bs} while ¢ gives values tdpc, z,y, a, b}.

disjunction-recovering post-analysis). In this example, if we had
the text of the entire program, we could start with an initial state of
I* = (pc = 0). Note that we will assume that the program counter
is represented with an additional equality = ¢ in each abstract
program state whereis a numerical constant. Instead of starting at
location0, assume that at locati@i we havel* = (pc = 81Azx >

a+ 1Ay > b+ 1). From this starting state the invariance analysis
could compute an invariadidss € IAs:

IAggépc:83/\a:Za+1/\y2b+1

An abstract state, of course, denotes a set of concrete statgs.
for example, represents the set of states:

{s|s(pc) =83 As(x)>s(a)+1As(y) >s(b)+1}

We call this operation seeding because it plants a starting (di-
agonal) relation in the abstract state. Later in the algorithm this
relation will grow into one which indicates how progress is made.

We then step the program once froraE®(7As3) with STEP,
approximating one step of the program’s semantics, giving us:

pes =83 Apc=84Nzx>a+1ANy>b+1
Nrxs=xANys=yANas=aANbs=>b

Finally, we run NVARIANCEANALYSIS again with this new state
as the starting state, and the isolated subprogpaams the program,
which gives us a set of invariants at locatio$, 83, etc. that
corresponds to the s&f4 s in the VARIANCEANALYSIS algorithm



of Fig. 1.
VAG 2 (pes =83 Apc=83Az>a+1Ay>b+1A
Ts>x+1Ays >yAas=aAbs=0)
VAgs 2 (pes =83 Apc=83Az>a+1Ay>b+1A
s > AYys >y+1Aas=aAbs=0)
VAS, 2 (pes =83 Apc=83Az>a—1Ay>b+1A
zs>x+1Ays>y+1Aas=aAbs=0)

{ VAL, VA, VAS,Y C VAs
The union of these three relations
VA, v VAE, v VAS,

forms the variance assertion for li88 in P, which is to say a su-
perset of the possible transitions from state83ato states also at
line 83 reachable inl or more steps of the program’s execution.
(Note that in this caseNVARIANCEANALYSIS is extracting dis-
junctive information implicit in the fixed point computed.) The dis-
junction VA%, v VAE, v VAS, is a superset of the transitive closure
of the program’s transition relation restricted to pairs of reachable
states both at locatios8.

One important aspect of this technique is that the analysis is
not aware of our intended meaning of variables likeandys: it

simply treats them as symbolic constants. It does not know that the
states are representing relations. (See Definition 12 and the further
remarks on relational analyses at the end of Section 4.) However,

as it was for 8ED(IAss), it is appropriate for us to interpret the
meaning ofVAZ, as a relation on pairs of states.

The variance assertiofidg; vV VAE, v VAS, shows us different
ways in which the subprogram can make progress. BecHdggV

divergent executions, so we now do not need to consider other
states to understand the behavior of this subprogram.

We stress that the “not visited infinitely often” property here
doesnot imply in general that the isolated subprogr@mtermi-
nates. In the example of this section the inner loop does terminate,
but a trivial example otherwise is

1 while (x>a) {

2 x=x-1;

3 while (nondet()) {}
4 }

Here we can show that locati@ns not visited infinitely often when
the program is started in a state where- a.

Continuing with the running example, due to the result of [37],
a relationRel is well founded if and only if its transitive closure
Rel™ is a subset of a finite uniofi; U --- U T}, and each rela-
tion T; is well-founded. Notice that we have computed such a finite
set: VAg,, VAE,, and VAS;. We know that the union of these three
relations over-approximates the transitive closure of the transition
relation of the progran® limited to states at locatio®3. Further-
more, each of the relations are, in fact, well-founded. Thus, we can
reason that the program will not visit locati®3 infinitely often
unless it exits the subprogram infinitely often. We will make this
connection formal in Section 3.

The last step to automate is proving that each of the relations
VAS,, VAE,, and VAS; are well-founded. Because these relations
are represented as a conjunction of linear inequalities, they can
be automatically proved well-founded by rank function synthesis
engines such asAXK FINDER [36] or POLY RANK [6, 7].

Benefits of the approach

VAS, v VAS, is a variance assertion, this measure of progress holds ® The technique above is fast. Using the Octagon-based program

betweerany twostatess andt at location83 wheres is reachable
andt is reachable in 1 or more steps from Notice that VAZ,
contains an inequality between and zs, whereas S8ED(/As3)
contained an equality. This means that, in the first of the three
disjuncts in the variance assertion at lig& z is at leastl less
thanz: In its relational meaning, because it is a variance assertion
the formula says “in the current stateis less than it was before”.
Finally, when we “run the analysis again” on subprogr@rthe
inner loop containing locatio®> must be analyzed. Literally, then,
to determine the local termination property for locatic®é$sand
85 involves some repetition of work. However, if we analyzed an
inner loop first an optimization would be to construct a summary,
which we could reuse when analyzing an outer loop. The exact
form of these summaries is delicate, and we won't consider them
explicitly in this paper. But, we remark that the summary would
not have to show the inner loop terminating: When an inner loop
fails to terminate this does not stop the local termination predicate
from holding for the outer loop, as the example in this section
demonstrates.

Proving local termination predicates (Lines 8-11 of Fig. 1) We
now attempt to use the variance assertion atdihm O to establish
the local termination predicate at [i88 in P. Consider the relation

Trss = {(S,t) | S ': IAs3 A s —>g t A t(pc) = 83}

Showing thatTrss is well-founded allows us to conclude the local
termination predicate:

Location&3 is not visited infinitely often in executions of the
isolated subprogran®.

The reason is due to the over-approximation computed at line 2
in Fig. 1. The abstract stat®Ass over-approximates all of the
states that can be reached at I even as parts of ultimately

invariance analysis packaged with [34] together withNR -
FINDER, this example is proved terminating th07 seconds.
TERMINATOR, in contrast, require8.3 seconds to establish the
same local termination predicate.

Like TERMINATOR [14] or POLYRANK [6, 7], the technique

is completely automatic. No ranking functions need to be given
by the user. Simplgheckingermination arguments is easy, and
has been done automatically since the 1970s. In contrast, both
automaticallyfinding and checkingermination arguments for
programs is a much more recent step. This will be discussed
further in Section 7.

e As in TERMINATOR, the technique that we have described
makes many little well-foundedness checks instead of one big
one. If we can find the right decomposition, this makes for a
strong termination analysis. In the proposed technique, we let
the invariance generator choose a decomposition forewgs (
VA&, VAE, VAS;). Furthermore, we let the invariance engine
approximate all of the choices that a program could make dur-
ing execution with a finite set of relations.

e As is true in TERMINATOR, because this analysis uses a dis-
junctive termination argument rather than a single ranking func-
tion, our termination argument can be expressed in a simpler
domain. In our setting this allows us to use domains such as Oc-
tagon [34] which is one of the most efficient and well-behaved
numerical abstract domains.

For example, consider a traditional ranking function for the loop
contained in line§2-90:

fs) = s(x) + s(y)

Checking termination in the traditional way requires support for
four-variable inequalities in the termination prover, as we must



proveR C Ty, whereR is the loop’s transition relation and
Ty ={(s;t) | f(s) = f(t) =1 A f(t) =0}
i.e. 81

Ty = {(s,0) | s(x)+5(y) > t(x)+1(y) ~ 1A t(x)+1(y) > 0} /!

Notice the four-variable inequality (wheséx) andt(x) will be /

treated with different arithmetic variables): 91 92
s(x)+s(y) > t(x)+t(y) — 1 assume(—(z>a A y>b))\

Thus, we cannot use the Octagon domain in this setting. We can \@9

in our setting becaus&Ag;, VAL, and VAS; are simpler than assume (<10

T: they are all conjunctions of two-variable inequalities, such

asz < z, but notz + y > . assume(z>a A y>b)

e Although tools like RINKFINDER synthesize ranking func- 36 @ 89
tions, we do not need them—we simply need a Boolean result. 7\ assume(z>10) <
This is in contrast to ERMINATOR, which uses the synthesized ‘ \ yi=y—1
ranking functions to create new abstractions from counterex- \z=2—1 o
amples. As a consequence, any sound tool that proves well- ‘ 87
foundedness will suffice for our purposes. @ — 84 T 88

Our technique is robust with respect to arbitrarily nested loops, —; - 5
as we're simply using the standard program analysis techniquesfigure 3. Graph representation of the program from Fig. 2, where
to prove relationships between visits to locatish Even if the we have circled a set of cutpoints. Note that assumptions involving
innermost loop did not terminate, we would still be able to es- “ondet have been elided.
tablish the local termination predicate at locati&h For this
reason our new analysis fits in ngl with termination decompo- tigns 2(Pc*Pc) gn program state®¢.> This formulation rep-
sition techniques based on cutpoints [25]. resents programs in a form where all control flow is achieved by
If the termination proof does not succeed due to the discovery nondeterministic jumps, and branch guards are represented with
of a non-well-founded disjunct, the remaining well-founded assumptions. For example, Fig. 3 shows a representation of the
disjuncts are now in a form that can be passed to a tool like program from Fig. 2 in this form.
TERMINATOR—TERMINATOR can then use this as a better We use the following notation: We writB(c) to indicate that
initial termination argument than its default one from which it  there is a directed path in graghthrough the ordered sequence of
will refine based on false counterexamples as described in [12]. verticeso. We write- for sequence concatenation.

The control-flow graph structure of programs is used to define
the notion of a set of cutpoints [25] in the usual way.

In contrast to ERMINATOR, VARIANCEANALYSIS seeds in a
dynamic fashion. This means thabstract states are seeded
after some disjunction has been introduced by the invariance DeriniTION 3 (Cutpoints).For a programP, a setL of cutpoints
analysis, which can improve precision and allows us to dynam- s a subset of. such that every (directed) cycle i contains at
ically choose which variables to include in the seeding. In fact, |east one element df.

an alternative method of approximating our core idea would

be to first use the source-to-source transformation described in3.2 Isolation

[13] on the input program and then apply an invariance analysis |, order to formally describe thesbLATE procedure from Fig. 1,

on the resulting program. We have found, though, that taking e first must define several constructs over program control-flow
this approach results in a loss of precision. graphs.

We do not need to check that the disjunction of the variance
assertions forms a transition invariant—it simply holds by con-
struction. In TERMINATOR this inclusion check is the perfor-
mance bottleneck.

DEFINITION 4 (SCS5). For a program P and set of cutpointg,,
we define a seBCSs(P, L) of strongly-connected subgrapb$
P:

SCSs(P,L) £ Uy c 1 mscsgd(€)
3. Concrete semantics and variance assertions whereO € mscsgd(¢) iff

In this section we give a precise account of the local termination 1. O is a non-empty, strongly-connected subgraplof
predicates, their relation to well-foundedness for isolated programs, 2. all vertices inO are dominated by, where for verticesn and
and the relation to variance assertions. These properties can be n,n is dominated by iff P(r - o - n) impliesm € o wherer

formulated exclusively in terms of concrete semantics. is the root vertex;
3. every cycle inP (that is, a cycle in the control-flow graph, not
3.1 Programs and loops in the executions of the program) is either containediror
DEFINITION 1 (Locations).We assume a fixed finite debf pro- contains a cutpoint irl. that is not inO; and
gram locations 4. there does not exist a strict supergraphothat satisfies these
conditions.

DEFINITION 2 (Programs)A programP € P is a rooted, edge-
labeled, directed graph over vertex det 1The invariance analysis algorithm relies (via trsLATE operation) on
being able to identify loops in programs. This led us to be explicit about
Programs are thought of as a form of control-flow graphs control-flow graphs, rather than use the usual, syntax-free, formulation in
where the edges are labeled with commands which denote rela-terms of functions over concrete or abstract domain elements.




For a well-structured program, and the set of cutpoints consisting

of all locations just inside of loop bodies and recursive function
call-sites, Definition 4 identifies the innermost natural loop contain-
ing ¢. This also handles non-well-structured but reducible loops,

but does not allow isolation of non-reducible subgraphs (such as

loops formed byotos from one branch of a conditional and back).
The subgraphs of identified by SC8(P, L) are the strongly-
connected components @&f, plus some which are not maximal.
Condition 2 limits the admitted non-maximal subgraphs to only
those that, intuitively, are inner loops of a strongly-connected com-
ponent. Conditior8 ensures that the allowed subgraphs are not at
odds with the given set of cutpoints, which may force merging mul-
tiple loops together into one subgraph. Conditicensures that the

Recall from Section 2 that the local termination predicate at line
82 was informally stated as

Line 83 is visited infinitely often only in the case that the
program’s execution exits the loop contained in ligesto
90 infinitely often.

That is, the local termination predicate is a liveness property about
location83, which could be expressed in linear temporal logic [35]

O0(O0pc =83 = Opcd LP(P,L,83))
Next we formally define the notion of local termination predicate.

subgraph for a loop includes its inner loops. These sorts of issuespDeriNITION 8 (Local termination predicateC()). For program

are familiar from compilation [1, 2].

Note that the elements of SGEP, L), being a superset of the
strongly-connected components Bf cover every cycle in (the
control-flow graph of)P. Another point to note is that two elements
of SCS5(P, L) are either disjoint or one is a subset of the other.

DEFINITION 5 (LP). For a program P, set of cutpointsL, and
location?, LP(P, L, ¢) is the set of vertices of the smallest element
of SCS5( P, L) which containd.

As an example, ifP is the program in Fig. 3, and. =
{82,83,85}, SCS5(P, L) {{84..86},{82..90}, {81..91}},
and we have:

Lp(P,L,82) = {81.91}
Lp(P,L,83) = {82.90}
LP(P,L,85) = {84.86}

DEFINITION 6 (ISOLATE). For program P, set of cutpointsL,
and program location?, 1SOLATE(P, L, /) is the induced sub-
graph based orLP(P, L, ¢). That is, the subgraph aP contain-
ing only the edges between elementd. BfP, L, ¢). The root of
ISOLATE(P, L,?) is £.

Informally, ISOLATE(P, L, £) constructs a subprogram &f such
that execution always remains withirp(P, L, £).

Note that we have given mathematical specifications of, but
not algorithms for computing, sets of cutpoints, ST &P, etc.
In practice efficient algorithms are available.

3.3 Local termination predicates
We now develop the definition of a local termination predicate.

P, cutpoint set, program locatior¢, and set of initial stategp,
LT (P, L,¢, Ip) holds
if and only if for any infinite execution sequence
80,81y eeey Siyeee with s € Ip andVi.s; —p Sit1
forall 7 >0

if pc(sx) = £ for infinitely manyk > j
thenpc(sys) ¢ LP(P, L, £) for somek’ > j.
We now define a variant of well-foundedness (of the concrete

semantics) in which the domain and range of the relation is spe-
cialized to a given program locatidn

DEFINITION 9 (WJF). For program O, program location?, and
set of initial statedo, we say thaW.F (O, ¢, Io) holds iff for any
infinite execution sequence

80,81y ey Siyeen with sg € Ip andVi. s; —p Sit1
there are only finitely many > 0 such thatpc(s;) = 4.

The key lemma is the following, which links well-foundedness
for an isolated loop to th€7 (P, L, ¢, Ip) property.

ProPOSITION1 (Isolation).LetO = ISOLATE(P, L, ¢) and sup-
pose

e [p is a set of initial states for progran®, and
e Jo = {t|3selp.s —pt A pc(t) ={}.

If WF(O, ¢, 1o) holds, thenC7T (P, L, ¢, Ip) holds.

Proof: Removing a finite prefix ending just before a state/at

To do so we must also develop notation for several fundamental from a counterexample t67 (P, L, ¢, Ip) yields a counterexam-

concepts, such as concrete semantics.
DEFINITION 7 (Concrete semanticsThe concrete semantics of a
program is given by:

e a setD¢ of program statesand
e afunction—.y: P — 2(Pc*Pc) from programs tdransition
relations

ple to WF (O, ¢, 1o). That is: Suppose by way of contradiction
thatWF (O, ¢, Io) and that-LT (P, L, ¢, Ip), that is, there exists
an infinite execution sequenes, s1, ..., si, ... With so € Ip and
Vi.s; —p si+1 Where there exists 4> 0 such thapc(s;) = ¢
for infinitely manyk > j andpc(sy/) € LP(P, L, ¢) forall k' > j.
Consider the suffix;, s,/ 41, ..., sj744, ... Of the infinite execution
sequence for som@ > j suchthapc(s;) = £. Sincepc(s;r ;) €
LP(P,L,¢) forall i > 0, andO = ISOLATE(P, L, ¢), we have

We use a presentation where program states include program loca- an execution sequence @ that visits/ infinitely often. That is,

tions, which we express with

e afunctionpc, : Do — L from program states to values of the
program counter

The transition relations are constrained to only relate pairs of

S§1405 S/ 41y ey Sjl iy -ne with EPS Io andVi.s; —o 85/ +it+1
such thapc(s;/4x) = £ forinfinitely manyk > j. This contradicts
F(O,¢, Io). m

Finally, if an analysis can establish the validity of a complete

states for which there is a corresponding edge in the program, that set of local termination predicates, then this is sufficient to prove

is, s — p timpliesP(pcp(s) - pcp(t)).

When we associate a prografhwith a setlp C D¢ of initial
stateswe will require thapc(s) is the root of the control-flow graph
for eachs € Ip.

whole program termination.

PROPOSITION2. Let L be a set of cutpoints faP and I» be a set
of initial states. If, for eacl € L, LT (P, L, ¢, Ip), then there is
no infinite execution sequence starting from any statg-in



Proof: Suppose for eacli € L, LT(P,L,¢,1p). Suppose by
way of contradiction that there is an infinite execution sequence:
80,81, -5 Siy ... With s € Ip @andVi.s; — p siy+1. Therefore at
least one location is visited infinitely often. Each of the infinitely-
often visited locationg has an associatedPLP, L, £). Let ¢’ be an
infinitely-often visited location whose set of locations(1P, L, ¢')
has cardinality not smaller than that ob(P, L, ¢""") for any other
infinitely-often visited locatior?””’. A consequence of the defini-
tion of LT (P, L, ¢, Ip) is that execution must leave, and return
to, the set (of control-flow graph locationsp(P, L, ¢') infinitely
often. Therefore there is a cycté C L in P which is not con-
tained in LP(P, L, ¢') and, by Definition 4, contains an infinitely-
often visited cutpoint” notin LP(P, L, ¢'). [Definition 4 does not
directly guarantee that’ is visited infinitely often, but since exe-
cution leaves and returns tor(P, L, ¢') infinitely often, by a pi-
geonhole argument, at least one of the choices of cgtlmust
include an infinitely-often visited cutpoint. Without loss of gener-
ality we choose”.] Therefore, since the elements of S&%, L)
cover every cycle ofP, there must exist (P, L, ¢'") that con-
tains C. SinceC is not disjoint from (P, L,¢’) and contains
" ¢ Lp(P,L,¢"), LP(P,L,¢') C LP(P,L,¢"). In particular,
Lr(P,L,¢") is larger than Ip(P, L, ¢'). Now since it contains an
infinitely-often visited cutpoint not in (P, L, ¢'), this contradicts
the proof’s assumption thatA(P, L, ¢') is maximal. ]

4. From Invariance Abstraction to Termination

In this section we use abstract interpretation to formally define the
items in the MRIANCEANALYSIS algorithm. We then link local

such that

e for all X C D*. IMAGE(—p,[X]) C [STER(P, X)] and
IMAGE(—p, [X]) C [INVARIANCEANALYSIS(P, X)]

e if s € [a] thenpcp(s) = pc(a).

where we use the point-wise lifting pf to sets of abstract states:
[]:2P* — 2Pc,

We use a powerset domain due to the fact that most successful
termination proofs must be path sensitive and thus we would like
to have explicit access to disjunctive informatfoSince we have
lifted the meaning functioff-] pointwise, it is distributive (preserv-

ing unions) as a map from”* to 2. But, we are not requiring
the analysis to be a (full) disjunctive completion.

In particular, note that we do not require distributivity, or even
monotonicity, of NVARIANCEANALYSIS or STEP; thus, we can
allow for acceleration methods that violate these properties [8, 20,
22]. Furthermore, we do not require that union be used at join-
points in the analysis, such as at the endiofstatements; our
definition is robust enough to allow an over-approximation of union
to be used. We have used the powerset representation simply so
the resultVAs in the VARIANCEANALYSIS algorithm gives us a
collection of well-foundedness queries, allowing us to apply the
result of [37]. If the invariance analysis is not disjunctive, then the
VAs result set will be a singleton. In this case the variance analysis
will still be sound, but will give us imprecise results.

Notice that this definition does not presume any relation be-
tween SEPand INVARIANCEANALYSIS, even though the latter is

termination predicates and well-foundedness for isolated programsusually defined in terms of the former; the definition just presumes

to abstraction to prove soundness @fRYANCEANALYSIS.

4.1 Abstract interpretations

We will assume that an abstract interpretation [18, 19] of a pro-
gram is given by two pieces of information. The first is an over-
approximation of the individual transitions in programs, such as
by a function SEp : P — 9P* . 9D% that works on abstract
statesD*. STEP(P, X) typically propagates each state ¥ for-

ward one step, in a way that over-approximates the concrete tran-

sitions of programP. The second is the net effect of what one
gets from the overall analysis results, which may be a function

INVARIANCEANALYSIS : P — 2P° — 2P that for programp,
over-approximates the reflexive, transitive closure? of the con-
crete transition relation aP. INVARIANCEANALYSIS is typically
defined in terms of 8P. However the details as to how they are
connected is not important in this context. Widening or other meth-
ods of accelerating fixed-point calculations might be used [18]. In

this paper we are only concerned with the net effect, rather than

the way that NVARIANCEANALYSIS is obtained, and our formu-
lation of over-approximation below reflects this. We do, however,
presume that 8£Pand INVARIANCEANALYSIS are functions from

programs to abstractions. This assumption allows the local variance

analysis using$OLATE.
If Ris abinary relation then we us®AGE(R, X) to denote its
post-image(y | 3z € X. zRy}.

DEFINITION 10 (Over-Approximation)An over-approximation
A of a concrete semantics— ., over concrete stateB¢ is

e a setD* of abstract states

e afunction[-] : D — 2P¢

e afunctionpc® : D¥ — L

e afunctionSTeR, : P — 27" — 27°

: : :
e a functionINVARIANCEANALYSIS ) : P — 27" — 2P

that the former over-approximates— p, and the latte—7%5. We
have just put in minimal conditions that are needed for the sound-
ness of our variance analysis.

We do not assume thaliVARIANCEANALYSIS(P, X) always
returns a finite set, even wheX is finite. However, if the re-
turned set is not finite whenARIANCEANALYSIS(P, L, I*) calls
INVARIANCEANALYSIS(P, X), our variance analysis algorithm
will itself not terminate.

4.2 Seeding, well-foundedness, and ghost state

We now specify seeding €&D) and the well-foundedness check
(WELLFOUNDED) used in the XRIANCEANALYSIS algorithm
from Fig. 1. These comprise the additions one must make to an
existing abstract interpretation in order to get a variance analysis
by our method. Often, these are already implicitly present in, or
easily added to, an invariance analysis. Throughout this section
we presume that we have a concrete semantics together with an
over-approximation as defined above.

Seeding is a commonly used technique for symbolically record-
ing computational history in states. In our setting, tleES opera-
tion in Fig. 1 is specific to the abstract domain. Therefore, instead
of providing a concrete definition, we specify properties that each
instance must satisfy. As a result, this gives significant freedom to
the developer of the 8=D/WELLFOUNDED pair, as we will see in
Section 6 where we define theeSD/WELLFOUNDED pair for a
shape analysis domain.

21t might be possible to formulate a generalization of our theory without
explicit powersets, using projections of certain disjunctive information out
of an abstract domain; we opted for the powerset representation for its
simplicity.

3|n fact, the variance analysis could be formulated more briefly using a sin-
gle over-approximation of the transitive closu#e»‘l‘;, but we have found
that separatingNVARIANCEANALYSIS and STEP makes the connection to
standard program analysis easier to see.



After seeding has been performed, theRVANCEANALYSIS
algorithm proceeds to use theMARIANCEANALYSIS to compute
variance assertions over pairs of states. In the following develop-
ment we formalize the encoding and interpretation between rela-
tions on pairs of states and predicates on single states.

First, we require a way to identifghost stateén the concrete
semantics. [In the program logic literature (e.g, see Reynolds [39]),
ghost variablesre specification-only variables that are not changed
by a program. We are formulating our definitions at a level where
we do not have a description of the state in terms of variables, so
we refer toghost stateby analogy with ghost variable.]

DEFINITION 11 (Ghostly Decomposition)A ghostly decomposi-
tion of the concrete semantics is a skt with

e a bijection(-,-) : S¢ X S¢ — D¢
such that
* (9,p) —p (¢, p') impliesg = ¢".

* (g1,p) —p (g1,p") implies(gz2, p) —F (g92,7")
® pcp(g1,p) = pcp(g2,p)

In Sc x Sc we think of the second component as the real program

DEFINITION 14 (Ghost Independenceluppose the concrete se-
mantics has a ghostly decomposition. We say that

e o € D' is ghost independeriit

(9,p) € {a) = Vg'.(¢",p) € (a)
i.e.,if the predicate]a] is independent of the ghost state. Also,
X C D¥ is ghost independent if each elemenfifs.
e An over-approximation preserves ghost independende
INVARIANCEANALYSIS(P, X) is ghost independent whenever
X C DFis ghost independent.

The idea here is just that the abstract semantics will ignore the ghost
state and not introduce spurious facts about it.

Curiously, our results do not require thate preserves ghost
independence, even though it typically will. Preservation of ghost
independence is needed, technically, only in the statedfent=
INVARIANCEANALYSIS(P, I*) in the VARIANCEANALYSIS algo-
rithm; for seeding to work properly we need that all the elements
of Q are ghost independent if all the initial abstract stategin
are. The formal requirement on th&® operation, which takes
independence into account, is:

state and the first as the ghost state. The first two conditions say that? EFINITION 15 (Seeding)A seeding functiors a map

ghost state does not change, and that it does not impact transitions

on program state.

Given a transition system it is easy to make one with a ghostly
decomposition just by copying the set of states. We do not insist,
though, that the bijection in the definition be an equality because
transition systems are often given in such a way that a decomposi-
tion is possible without explicitly using a product. Typically, states
are represented as functiowsr — Val from variables to values,
and if we can partition variables into isomorphic sets of program
variables and copies of them, then the basic bijection

(A=V)x(B—=YV) (A+B—YV)

can be used to obtain a ghostly decomposition. In fact, we will use
this idea in all of the example analyses defined later.

Given a ghostly decomposition, we obtainredational mean-
ing ((a)), which is just[-] adjusted using the isomorphism of the
decomposition. Formally,

~

DEFINITION 12 (Relational Semanticsfor anya € D¥, the re-
lation (a)) € Sc x Scis

{a) = {(g.p)](g,p) € lal}

We are using the notatiofy, p) here for an element ab¢ cor-
responding to applying the bijection of a ghostly decomposition,
reserving the notatiofy, p) for the tuple inS¢ x Sc.

Using this notion we can formally define the requirements for
the well-foundedness check in the algorithm of Fig. 1.

DEFINITION 13 (Well-Foundedness Checl3uppose tha#l is an
over-approximation of a progran® with ghostly decomposition.
Then awell-foundedness ched& a map

WELLFOUNDED : D* — {true, false}

such that ifWELLFOUNDED(a) then {(a)) is a well-founded rela-
tion.

Recall that a relatiorR is well founded iff there does not exist an
infinite sequence such thatvi € N. (p;, pi+1) € R. Then a well-
foundedness check must soundly ensure that the relgtgnon
program states is well founded.

For our variance analysis to work properly it is essential that the
abstract semantics work in a way that is independent of the ghost
state.

SEED: Df — D*
such that ifa is ghost independent ar(g, p) € ((a)) then(p,p) €
{(SEED(a))).

SEeED(a) can be thought of as an over-approximation of the di-
agonal relation on program variablesdnThat is, we do not re-
quire that $ED exactly copy the state, which would correspond to
SEeD(a) = {(p,p)} instead of(p, p) € SEED(a) in the definition.
4.3 Soundness
To establish the soundness result, we fix:

e a concrete semantics with ghostly decomposition;

e an over-approximation that preserves ghost independence, with
a seeding map and sound well-foundedness check;
e a programP and set of initial stategp C Dc;

e a finite setl* C D* of initial abstract states, each of which is
ghost independent, and whelre C [I7].

THEOREM1 (Soundness)f VARIANCEANALYSIS(P, L, I¥) of
Fig. 1 terminates, fol_ a finite set of program locations; then upon
termination,L T Preds will be such that for each € L ands € Ip,
LT(P,L,¢,Ip)if LTPreds[{] = true .

As an immediate consequence of Proposition 2 we obtain

COROLLARY 1. SupposeL is a set of cutpoints. Assume that
LTPreds = VARIANCEANALYSIS(P, L, I*). In this caseP ter-
minates ifv¢ € L. LTPreds|[{] = true.

Now we give the proof of the theorem.

Proof: [Theorem 1] Considet € L and suppos&.TPreds|(]
true on termination of WRIANCEANALYSIS. Let O
ISOLATE(P, L, ¢) and

Io = {t|3selp.s —pt A pc(t)=1{}.

We aim to show thatVF (O, ¢, Io) holds. The theorem follows at
once from this and Proposition 1.

LetTre = { (b,c) | 3(g,b) € Io
(9,b) —5 (9,¢) Ape((g, ) = €}



Assume that the algorithm in Fig. 1 has terminated and that
LTPreds[f] = true. First, we have a lemma:

If Tr, is well founded thenWF (O, ¢, Io) holds while(x<0 && k>0) x = x * x + k;

This lemma is immediate from the transition conditions in Defini- but not a typical loop that increments or decrements a counter. We
tion 11. So, by the lemma we will be done if we can establish that have mentioned it only to illustrate the technical point that our
Tr, is well founded. For convenience, we define: definition of seeding does not rely on being able to specify the
N _ _ equality between normal and ghost state. In this sense, our formal
Locs(ty, £2) = {(s,1) | pe(s) = £1 A pe(t) = L2} treatment is perhaps more general than might at first be expected.
We need to show two things:

A more significant illustration of this point will be given in
. - Section 6.

1. Wanted:{((r)) N Locs(¢,¢) | r € VAs} is afinite set of well-

founded relations.

The Sign domain is an almost useless termination analysis; it
can prove

Remark: On Relational Analyses. A “relational analysis” is one
where an abstract element over-approximates a relation between
VAs is clearly finite, as otherwise the algorithm would not states (the transition relation) rather than a set of individual states.
terminate. Therefore we know that there exists a finite dis- This notion is often used in interprocedural analysis, for example
junctively well-founded decomposition oflJ,.. 4, {(r)) N in the S_ymbol_ic Relational Separate_AnaIys_is of [21]. (This sense
Locsg(4, £) where, for eachr € VAs, WELLFOUNDED(r) = of “relational” is not to be confused with that in “relational abstract
true. This is due to Definition 13, which tells us that, for each domain”; the same word is used for distinct purposes in the pro-
r € VAs, ((r)) is well-founded.v’ gram analysis literature.)

It has been suggested [17] that our use of ghost state above is a
way to construct a relational analysis from a standard one (where
states are over-approximated). Indeed, it would be interesting to
rework our theory using a formulation of relational analyses on a

2. Wanted:Try C U,.c yu, () NLoOCYY, £).

Assume that there exigb,c) € Tr,. That is: we have some

(9.b) € Io with (g,b) —4 (g,¢) andpc((g,c)) = L. By
over-approximation,g,b) € |J[ZAs]. Thus, there exists a
q € IAs such that(g,b) € [¢]. Since the start states iff
are ghost independent, andVARIANCEANALYSIS preserves

level of generality comparable to standard abstract interpretation
where, say, the meaning map had tpp : D¥ — 2DoxDe
rather than[-] : D* — 2P¢. In this sense, our formal treatment
here is probably not as general as possible; we plan to investigate

this generalization in the future. Among other things, such a for-
mulation should allow us to use cleverer representations of (over-
approximations of) relations than enabled by our use of ghost state;
see [21], Section 9, for pointers to several such representations.

ghost independence, we obtain thais ghost independent.
We obtain from Definition 15 thatb,b) € {(SEED(q))). By
ghostly decomposition(b,b) —¢& (b, c), and so by over-
approximation for $eP followed by INVARIANCEANALYSIS,
there existsr € VAs where (b,c) € [r]. By the defin-
ition of ((-)) this means tha(b,c) € ((r)). Thus, because
pc(q) = pe(r) = £, Tre € U, ey, () NLOCS(C, ). v

We can now prove thaf’r, is well founded as follows. The two

5. Variance analyses for numerical domains

The pieces come together in this section. By instantiating!V
ANCEANALYSIs with several numerical abstract domains, we ob-
facts just shown establish that, C T, U --- U T, for a finite tain induced variance analyses and compare them to existing termi-

collection of well-founded relations given byAs (note that the ~ Nation proof tools on benchmarks. As the results in Fig. 4 show,
union need not itself be well founded). Further, by the definition of the induced variance analyses yield state-of-the-art termination
Tr it follows that Tr, = Tr; . So we knowTr; C Ty U---UT, provers. The two domains used, Octagon [34] and Polyhedra [23],

for a finite collection of well-founded relations. By the result of Where chosen because they represent two disparate points in the
[37] it follows that Tr, is well founded. o cost/precision spectrum of abstract arithmetic domains.

We close this section with two remarks on the level of generality Instances ofSEED and WELL FOUNDED for numerical domains.
of our formal treatment. Before we begin, we must be clear about the domain of states.

We presume that we are given a fixed finite Sat of variables

Remark: On Relational Abstract Domains.A “relational ab-  with pc € Var.* Concrete states are defined to be mappings from
stract domain” is one in which relationships between variables (like variables to valueDe 2 Var — V that (for simplicity of the

z < yorz = y)can be expressed. Polyhedra and Octagon are presentation) are limited to a set of numerical valtieGvhere)
classic examples of relational domains, while the Sign and Interval cquid be the integers, the real numbers, etc.). The abstract states
domains are considered non-relational. The distinguishing feature ¢ are defined to be conjunctions of linear inequalities dvewe

of Sign and Interval is that they acartesian in the sense thatthe  5ssume that each abstract state includes a unique eqpality c
abstract domain tracks the cartesian product of properties of pro-fo 4 fixed program location constant This gives us the way
gram variables ([15], p.10), independently. It has been suggested;, gefine the projectiompc? required by an over-approximation
that our variance analyses might necessarily rely on having a rela'(Definition 10).

tional (or non-cartesian) abstract domain, because in the examples'  Next in order to define seeding we presume that the variables

above we use equalities to record initial values of variables. in Var are of two kinds,program variablesand ghost variables

_ But, consider the Sign domain. For each program variathe The former may be referenced in a program, while the latter can be
Sign domain can record whethes value is positive, negative, or - reterenced in abstract states but not in programs themselves. The
zero. If the value cannot be put into one of these categoriesTit is programs are justoto programs with assignment and conditional

We can qlefine a seeding function, wheeS( ') assigns to each branching based on expressions with Boolean type (represented in
seed variable ; the same abstract value asFor example, ifF' is flow-graph form as in Definition 2).

positive(z) A negative(y) then SED(F') is

4 For simplicity we are ignoring the issue of variablesfirthat are not in-
scope at certain program locations. This can be handled, but at the expense
of considerable complexity in the formulation.

positive(x) A negative(y) A positive(zs) A negative(ys)

This seeding function satisfies the requirements of Definition 15.



We assume a disjoint partitioningVar U PVar of the set of
variablesVar wherepc € PVar. We presume a bijective mapping
p : PVar — GVar that associates ghost variables to program
variables. This furnishes the isomorphisms

(GVar — V) x (PVar — V)
(PVar — V) x (PVar — V)

from which we obtain the bijectiorf-,-) : Sc¢ x S¢ — D¢
required by Definition 11 (wher€c = PVar — V and D¢ =
Var — V).

At this point we have everything that is needed to define the
SEeD and WELLFOUNDED functions:

SEED(F) = FANepvarv =p(0)}
WELLFOUNDED(F') WFCHECK(p(PVar), PVar, F)

SEED usesp to add equalities between ghost and program vari-
ables. The well-foundedness check calls eitheRRFINDER [36]

or POLYRANK [6, 7], which take an input formula and then report
whether or not the formula denotes a well-founded relation.

We will not give the explicit definitions of the semantics
of concrete programs, or of the corresponding definitions of
INVARIANCEANALYSIS and STEP on the particular abstract do-
mains, referring instead to [23, 34]. The concrete dynamic seman-
tics — p satisfies the required conditions of Ghostly Decompo-
sition (Definition 11) because ghost variables do not appear in
programs. Because these variables are never modified by the pro
gram the functions 8P and INVARIANCEANALYSIS will pre-
serve ghost independence of abstract states.

Furthermore, the seeding function in this section satisfies Defin-
ition 15. Also, WELL FOUNDED satisfies Definition 13 as a result of
soundness of the well-foundedness checkemRFINDER [36] or
PoLYRANK [6, 7]). Thus we have given the definitions needed to

~

~

Var — V

L

obtain a specific variance analysis as an instance of the framework

in the previous section.

Example. Let PVar = {z,y,pc}, GVar = {zs,ys,pcs}, and
p = {(z,zs), (pc,pcs), (y,ys)} is a bijective mapping. Let be
the Octagon state < y A pc = 10. Thus,

SEED(s) =x <yApc=10Ax =xs Apc=pcs ANy = ys
If we execute the command sequence
z =z + 1;assume(z < y); goto 10
from s, the abstract transfer function should produce a gtate

g2 <yApc=10Az >z, + 1 Apcs = pcAys

{g)) is a well-founded relation becauses increasing while being
less thany, andy is unchangingz cannot increase forever and
yet remain less than an unchangindndeed, when RNK FINDER

is passed this formula with the ghost and program variables as
the “from” and “to” variables, it reports that it can find a ranking
function—confirming that(q)) is a well-founded relation.

Experiments. In order to evaluate the utility of our approach for

P) PoLYTERM is the variance analysis similarly induced from an
invariance analysis &y based on the New Polka Polyhedra
library [30]°

PR) A script suggested in [5] that calls the tools described in
the PoLYRANK distribution [6, 7] with increasingly expensive
command-line options.

T) TERMINATOR [14].

These tools, except for ERMINATOR, were all run on a 2GHz
AMDG64 processor using Linux 2.6.16 ERMINATOR was executed

on a 3GHz Pentium 4 using Windows XP SP2. Using different ma-
chines is unfortunate but somewhat unavoidable due to constraints
on software library dependencies, etc. Note, however, thE-T
MINATOR running on the faster machine was still slower overall,
so the qualitative results are meaningful. In any case, the running
times are somewhat incomparable since on failed pro@®mi-
NATOR produces a counterexample pathgT@TERM and POLY-
TERM give a suspect pair of states, whil@©FYRANK gives no
information. Also, note that the script used to cait® RANK will
never terminate for a divergent input program; the tool may quickly
fail for a given set of command-line options, but the script will sim-
ply try increasingly expensive options forever.

Fig. 4 contains the results from the experiments performed with
these provers. For example, Fig. 4(a) shows the outcome of the
provers on example programs included in theT@NAL distrib-
ution. Example 3 is an abstracted version of heapsort, and Example
4 of bubblesort. In this case@ATERM is the clear winner of the
tools. POLYRANK performs poorly on these cases due to the fact
that any fully-general translation scheme from programs with full-
fledged control-flow graphs tod2y RANK’s input format will at
times confuse the domain-specific rank-function search heuristics
used in BLYRANK.

Fig. 4(b) contains the results from experiments with the 4 tools
on examples from the®.y RANK distribution® The examples can
be characterized as small but famously difficaltg(McCarthy’s 91
function). We can see that, in these cases, neitB&MINATOR nor
the induced provers can beab By RANK's hand-crafted heuristics.
PoLYRANK is designed to support very hard but also carefully
expressed examples. In this case each of these examples from
the PoLYRANK distribution are written such thatd®yRANK's
heuristics find a termination argument.

Fig. 4(c) contains the results of experiments on fragments of
Windows device drivers. These examples are small because we cur-
rently must hand-translate them before applying all of the tools but
TERMINATOR. In this case @TATERM again beats the competi-
tion. However, we should keep in mind that the examples from this
suite that were passed t&RMINATOR contained pointer aliasing,
whereas aliasing was removed by hand in the translations used with
PoLYRANK, OCTATERM and ROLY TERM.

From these experiments we can see that the technique of in-
ducing variance analyses witlA®IANCEANALYSIS is promising.

For programs of medium difficultyi.e. Fig. 4(a) and Fig. 4(c)),
OCTATERM is many orders of magnitude faster than the existing

arithmetic domains we have instantiated it using analyses basedprogram termination tools for imperative programs.

on the Octagon and Polyhedra domains and then compared thes
analyses to several known termination tools. The tools used in the
experiments are as follows:

O) OCTATERM is the variance analysis induced bg @\NAL [34]
composed with a post-analysis phase (see below)lAQAL
is included in the Octagon domain library distribution. During
these experiments €&ATERM was configured to return “Ter-
minating” in the case that each of the variance assertions in-
ferred entailed their corresponding local termination predicate.
The WFCHECK operation was based omRK FINDER.
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%{emark: On Octagon versus Polyhedra for variance analysis.
Example 1 from Fig. 4(b) demonstrates that, by moving to a more
precise abstract domaing. moving from Octagon to Polyhedra),
we get a more powerful induced variance analysis. For another

5PoLy uses the same code base ast@NAL but calls an OCaml module
for interfacing with New Polka, provided with thedANAL distribution.

6 Note also that there is ho benchmark number 5 in the original distribution.

We have used the same numbering scheme as in the distribution so as to
avoid confusion.



L Tt T 2 T 3 T 4 [ 5 T 6 1

O |[0.11| v || 0.08| v 6.03| v || 1.02| v 0.16| v || 0.76| v
P || 1.40| v || 1.30| v' || 10.90| v || 2.12| v 1.80| v || 1.89| v
PR || 0.02] v || 0.01| v TIO| - || TIO] - TIO| - || TIO] -
T || 631 v || 493 vV TIO| - || TIO] - [[33.24] v || 3.98| v
(a) Results from experiments with termination tools on arithmetic examples from the Octagon
Library distribution.
It T 2 1T 3 T 4 [T 6 T 7 [ 8 [ 9 [ 130 [ 1T [ 12 ]
0] 0.30] T || 0.05] f [JO.11] T |[|0.50] T || 0.10] § [J0.17] T ][ 0.16] T || 0.12] T || 0.35] { 0.86] 1 || 0.12] §
P 142 v || 082 v |[1.06] 1 [[2.29] 1 || 2.61| T |[1.28] 1 ||0.24] t || 1.36| v || 1.69] | 156| 1 || 1.05] T
PR 021 v 013| v || 044 v |[1.62| vV 388 v |[011| v |[202| v || 1.33| v || 13.34| v || 174.55] v 0.15| v
T |[435.23| v || 61.15| v || TIO| - |[[ T/IO| - || 75.33| v || TIO| - || TIO| - || TIO| - TIO| - T/O| - || 10.31] ¢
(b) Results from experiments with termination tools on arithmetic examples fromahgFANK
distribution.
L1t [T 2 T 3 [ 4 [ 5 [ 6 [ 7 [ 8 [ 9 [ 10 ]

0.53| v 050 v 032 v || 014 © || 0.17
1.60| v 2.65| v 189 v || 242 © 1.27
T/IO | - T/O| - TIO| - || TIO| - 0.31
67.11| v || 298.45| v || 444.78| v' || T/IO | - || 55.28

O 1.42| v 167 || 047|© | 0.18| v || 0.06
P 466 v || 6350 148| o || 1.10| v 1.30
PR T/O| - T/O| - TIO| - || TIO] - 0.10
T | 10.22] v || 31.51| © || 20.65| © || 4.05| v || 12.63

SNENENEN

SNESENEN

(c) Results from experiments with termination tools on small arithmetic examples taken from Win-
dows device drivers. Note that the examples are small as they must currently be hand-translated
for the three tools that do not accept C syntax.

Figure 4. Experiments with 4 termination provers/analysess used to represent€ATERM, an Octagon-based variance analyBiss
PoLYTERM, a Polyhedra-based variance analysis. PRerows represent the results 0bPy RANK [5]. T represents ERMINATOR [14].

Times are measured in seconds. The timeout threshold was set to/58@sproof was found”.f="false counterexample returned”. T/O

= “timeout”. ®="termination bug found”. Note that pointers and aliasing from the device driver examples were removed by a careful hand

translation when passed to the toGIsP, andPR.

example of how the Polyhedra-based variance analysis is more6. Variance analyses from shape analyses

precise, consider the following program fragment: SONAR [3] is an invariance analysis tool which tracks the sizes of

summarized or abstracted heap structuresvAR was first used in

the MUTANT termination prover, which implements an algorithm

from which that in Fig. 1 is generalized. 0fANT has been used to

} else { prove the termination of Windows OS device driver dispatch rou-
if (nondet ) { tines whose termination depends on arguments about the changing

y=y-1; shape of the heap during the dispatch routine’s execution. Due to
} else { isolation, S)NAR’s induced variance analysis€., the analysis re-
sulting from SNAR and Fig. 1) is more powerful than the original

while (x+y>z) {
if (nondet()) {
x=x-1;

z=z+1;
} MUTANT. As an example consider the following loop where we as-
} sume, before entering into the loop, thkas a pointer to a circular
} list:
PoLYTERM can prove that this program is terminating when ex- 1 z = X;
ecution starts in a state where battandy are larger thar, but 2 do {
OCTATERM reports a false bug because the Octagon domain only 3 z = z->next;
tracks two-variable inequalities. 4 y = z;
5 while (y !'= x) {

Remark: On Disjunction. As mentioned above, if the underly- 6 y = y->next;
ing abstract domain of an induced termination analyzer does not 7
support some level of disjunction, then the termination analysis re- 8 } while (z != x)

sults are likely to be quite imprecise. Because disjunctive comple-

tion is expensive (exponential) and there is no canonical solution, SONARTERM can prove this example terminating, whileUWANT
abstract orders and widening operations must be tailored for the ap-cannot.

plication. For our present empirical evaluation we use an extraction =~ SONARTERM is an interesting case of an induced variance
method after the fixed-point analysis has been performed in order toanalysis, as it demonstrates ho®e® does not need to be the most
find disjunctive invariance/variance assertions. The precise degreeprecise approximation of the diagonal relation, and it is also an ex-
of dependence that termination proofs have on disjunctive comple- ample of how WeLLFOUNDED can do additional abstraction on an
tion, or an approximation thereof, is an important direction for fu- already abstract state before attempting to prove it well-founded.
ture work that we hope the existence of theRVANCEANALYSIS Elements of ®NAR's abstract domai* are of the formlIAS,
algorithm will catalyze. whereY is a spatial formula represented as-aonjoined set of
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possibly inductive predicates expressed in separation logic [40],
and II is a conjunction of arithmetic inequalities over variables
DVar that describe the number of inductive unwindings (depth)
of the inductive predicates iil. SONAR is path-sensitive in a way
that can be expressed as a control flow based trace partitioning [33]
where the analyzer dynamically computes a partition by merging
partitions when the reachable states can still be precisely repre-

sented. Alternately, this trace partitioning can be seen as a dynami-

cally computed control-flow graph elaboratiara [41]. As for the
numerical domains, in order to define the projectjaf required
by an over-approximation (Definition 10), we assume thatlihe
part of each abstract state includes a unique equadity: ¢ for a
fixed program location constaat

Before presenting the details of theo®@AR instantiation we
begin with a small example. Consider an abstract statech that

s 21" (z,y) * Is¥’ (y,z) NE>0AK' >0

This is an invariant of the loop at lineof the example above and,
informally speaking,s states that: is a pointer to a linked list
segment such that following the trail of pointers in hext fields

for k steps (for somé) will lead to a node at addregs Note that,

if we follow the next fields fromy (for &’ steps), we will get back

to the original node at. Additionally, due to thex, we know that
there is no aliasing between the first and second lists: they occupy
disjoint memory. In this casee%D(s) equals:

Is* (2, ) * 1s* (y,2) A k>0 A K >0 A k=ko A K'=k.

Note that we are only copying arithmetic variables, not pointers.
If we symbolically execute this new state through the instruction
sequencg = y->next; assume(y!=x); then this could lead to
the symbolic state’ (amongst others):

s 2155 (2, y) # 15" (1, 2) Aka >0 A K >0 A k=kot+1 A K =K, —1

WELLFoUNDED(s") will project a relation between staté, k- )
and(k, k') such that

Es>OA K >O0A k=ks+1 A K =ki—1

This relation can be proved well-founded by botANX FINDER
and POLY RANK.

Instance of SEED and WELL FOUNDED. For SONARTERM, we
assume a partitioninGg:Var U PVar of the set of variable¥ar,
and assume a set of depth variabl®8ar C PVar. We assume
thatpc € PVar \ DVar, and that the program neither reads from
nor writes to the ghost variabl€sVar. The set of concrete program
statesD¢ is then defined:

GStack £ GVar — Val PStack £ PVar — Val
Stack £ Var — Val Heap £ Loc —gy, Val
GState £ GStack x Heap PState £ PStack x Heap

D¢ £ Stack x Heap

We assume a bijective mappipg PVar — GVar, thus giving us
an isomorphism

GStack x PStack = PStack x PStack = Stack

which then yields isomorphisms

~

o

GState x PState PState x PState D¢

to obtain(-,) : Sp x Sp — D¢ (WhereSp = PState), the
bijection required by a Ghostly Decomposition (Definition 11).
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The following four equations define an instantiation for the
operations required to induce a variance analysis franAR:

SEED(IIAY) £ (IIAXA Nvemvans){v = p(v)})
SEED(T) 27
WELLFOUNDED(IT A X)) £ WFCHECK(p(DVar), DVar, IT)
WELLFOUNDED(T) £ false

wherefDV(II A X) denotes the set of depth variables appearing
in IT A 3, and WECHECK could be tools such asd®yY RANK

or RANKFINDER. The domain element is used in ®NAR to
represent the case where memory-safety could not be established
by the abstract interpretation. Notice that these definitions ignore
the spatial park, and treat only the depth variables. In particular,
WELLFOUNDEDIs constant in the spatial part, andeb plants no
information about the spatial part. In this wayg e is not the best
approximation of the diagonal relation, and so is an example that
exercises the looseness of Definition 15.

The bijection for ghostly decomposition and8M. FOUNDED/
SEED operations just defined are the necessary additions to the
SONAR invariance analysis to obtain theoSBARTERM variance
analysis. We refer to [3] for the remaining details of theNaRr
analysis.

7. Related work

A number of termination proof methods and tools have been re-
ported in the literature. Examples include the size-change prin-
ciple for purely functional programs(g.[31]), the dependency
pairs approach for term-rewrite systenesg([26]), rank-function
synthesis for imperative programs with linear arithmetic assign-
ments €.9.[6, 9, 10, 42, 38]) and even non-linear imperative pro-
grams [16]. Many of these tools and techniques use specific and
fixed abstractions. The size-change principle, for example, builds
an analysis around the program’s call-graph. Rank-function syn-
thesis techniques, for example, support limited control-flow graph
structures €.g.single unnested while loops, perhaps without con-
ditionals), meaning that support for general purpose programs re-
quires an abstraction before rank synthesis can be performed. The
work presented here is not tied to a fixed abstraction.

This paper generalizes the previous work ow™NT in [3].
Thus, given that it is a generalization, some overlap in contri-
butions is to be expected.OBAR's induced variance analysis,
SONARTERM, is unique to this paper and is also more accurate
than MUTANT. There, we described a specific termination check-
ing tool, concentrating on a particular domain (shape analysis) and
focusing much of our attention to the underlying invariance analy-
sis used (BNAR). Here, we introduce the notion of variance analy-
sis, describe a general method of implementing the analysis with
invariance analyses, show the general algorithm at work in several
contexts, and give a proof of the soundness of parameterized vari-
ance analyses. These contributions are all unique to the new work.

The work in this paper builds on the fundamental result of [37]
on disjunctively well-founded relations, which shows that a relation
Rel is well-founded if and only if its transitive closuRel™ is a
subset of a finite uniody U - -- U T, of well-founded relations
(called a transition invariant). The result in [37] led to a method of
constructing termination arguments using counterexample-guided
refinement [12]. The idea is that when an inclusion ch&tk C
Ty U---UT, fails (so that we do not have an over-approximation),
a counterexample can be used to produce a new well-founded
relation T;,1. Then if the inclusionR™ C Ty U --- U T; U
Ti+1 holds, well-foundedness @t has been established,; if not the
abstraction can be refined again using a counterexample.

TERMINATOR is a symbolic model checker for termination and
liveness properties that is based on this idea, as described in [11,



13, 14]. The difficulty in TERMINATOR is that checking the validity during further attempts to prove termination or other liveness prop-
of the termination argument.g. checking the invariance property  erties. This would undoubtedly lead to faster termination provers,
that proves the validity of the termination argument) is extremely with at least as much precision as is now possible. A more inter-
expensive. This was shown in Section 5, which presents the first esting question isCan the combination of approaches prove new

known experimental evaluation of tools likeERMINATOR and programs terminating that cannot be proved terminating with the
POLYRANK. approaches separatelyPhis arises from the fact thatERMINA-

In contrast, here we directly compute an over-approximation, TOR sometimes suffers in cases where the loop variables are ini-
T, U---UT,, where the inclusioR™ C T} U - - - U T, holds by tialized to constant valueg@.for (i=0;i<N;i++) ;). In this case

construction. Unlike in ERMINATOR, theT; are not guaranteedto ~ TERMINATOR might (as it is based on predicate abstraction [27])
be well-founded: we have to check that. As we have seen, this hasproduce an infinite number of predicatas<£0, i==1, etc). TEr-
some advantages as regards speed and the ability to tune precisiorMINATOR has heuristics that attempt to mitigate this issue, but these

The work here takes the opposite perspective fraeRMWINA- techniques often fail. OTATERM and POLYTERM, for example,
TOR. We show how an over-approximatirig U --- U T,, can do not suffer from this problem. Thus, we might be able to use the
quickly be computed using an off-the-shelf abstract interpretation. information from failed runs of OTATERM to help TERMINATOR
We do not need to check the inclusion, asRMINATOR must, overcome its limitations in contexts like this.

because it holds by construction. But we must still check that Finally, liveness properties (including termination) for finite-
eachT; is well-founded. So, although justified by the same re- state systems amount to invariance properties. All known model
sult on disjunctively well-founded relations, we use of this result checkers that support liveness properties for finite-state systems
in a fundamentally different way than doe§AMINATOR: we get make use of this fact. Bieret al. [4] go so far as to simply convert
over-approximation by construction, but have to check for well- the liveness checking problem for finite-state systems into safety.
foundedness, while BRMINATOR’s candidate termination argu-  Thus, liveness and termination only become distinct from safety
mentsT; U- - -UT; are disjunctively well-founded by construction, in the context of infinite-state systems. It is known, though, that
but it may not be an over-approximation. Our technique is not de- liveness properties for infinite state systems can be reduced to
pendent on counterexample-driven refinement or on predicate ab-fair termination (see [11, 43]). It therefore seems likely that the

straction. ideas in this paper could be used for liveness analyses other than
The work in [37] uses the result on disjunctively well-founded termination.
relations to justify several inference rules faansition invariants The variance analyses we have given as instances of this paper’s

a transition invariant is an over-approximation of the transition proposed algorithm are built from invariance analyses that are con-
relation of a program, when restricted to reachable states. It would cerned with established ingredients of termination provers: linear
be straightforward to modify the ARIANCEANALYSIS algorithm arithmetic and size of data structures. However, there exist many
to compute transition invariants. As it stands, given a program invariance analyses built on a broad spectrum of abstractions. It
with transition relationR, our variance assertions can be seen will be exciting to see what kinds of variance analyzers will come
as transition invariants for the transitive closuRe, restricted of combining these abstract domains withRRIANCEANALYSIS.
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