
Heap Decomposition for Concurrent Shape Analysis
Tel Aviv University, School of Computer Science,

Technical Report TR-2007-11-85453

R. Manevich1,⋆, T. Lev-Ami1,⋆⋆, M. Sagiv1, G. Ramalingam2, and J. Berdine3

1 Tel Aviv University,{rumster,msagiv,tla}@post.tau.ac.il
2 Microsoft Research India,grama@microsoft.com

3 Microsoft Research Cambridge,jjb@microsoft.com

Abstract. We demonstrate shape analyses that can achieve a state space reduc-
tion exponential in the number of threads compared to the state-of-the-art analy-
ses, while retaining sufficient precision to verify sophisticated propertiessuch as
linearizability. The key idea is to abstract the global heap by decomposing itinto
(not necessarily disjoint) subheaps, abstracting away some correlations between
them. These new shape analyses are instances of an analysis framework based on
heap decomposition. This framework allows rapid prototyping of complexstatic
analyses by providing efficient abstract transformers given user-specified decom-
position schemes. Initial experiments confirm the value of heap decomposition in
scaling concurrent shape analyses.

1 Introduction

The problem of verifying concurrent programs that manipulate heap-allocated data
structures is challenging: it requires considering arbitrarily interleaved threads manipu-
lating unbounded data structures. Both heap-allocated data structures and concurrency
can introduce state explosion. Their combination only makes matters worse. This paper
develops new static analysis algorithms that address the state space explosion problem
in a systematic and generic way. The result of these analysescan be used to automati-
cally establish interesting properties of concurrent heap-manipulating programs such as
the absence of null dereferences, the absence of memory leaks, the preservation of data
structure invariants, andlinearizability [10].

The Intuition. Typical programs manipulate a large number of (instances of) data
structures (possibly nested within other data structures). Each individual data structure
can usually be in one of several different states (even in an abstract representation). This
can lead to a combinatorial explosion in the number of distinct abstract states that can
arise during abstract interpretation.

The essential idea we pursue is that ofdecomposingthe heap into multiple subheaps
and abstracting away some correlations between the subheaps. Decomposition allows
reusing subheaps that were decomposed from different heaps, thus representing a set of

⋆ This research was partially supported by the Clore Fellowship Programme.
⋆⋆ Supported by an Adams Fellowship through the Israel Academy of Sciences and Humanities.



heaps more compactly (and more abstractly). For example, consider a program main-
taining k disjoint lists. A powerset-based shape analysis such as theone in [20] uses
a lattice whose height is exponential ink. An abstraction that ignores the correlations
between thek lists reduces the lattice height to be linear ink, leading to exponentially
faster analysis. (The savings come from not maintaining thecorrelations between dif-
ferent states of the different lists, which we observe are often irrelevant for a specific
property of interest.) Similar situations arise in the kindof multithreaded programs dis-
cussed earlier, where the size of the state space is a function of the number of threads
rather than the number of data structures. In this paper, we allow decomposing the heap
into non-disjoint (i.e., overlapping) subheaps, which is important for handling programs
with fine-grained concurrency (where different threads cansimultaneously access the
same objects) in a thread-modular way.

Fine-Grained Concurrency. Fine-grained concurrent heap-manipulating programs al-
low multiple threads to use the same data structuresimultaneously. They trade the sim-
plicity of the single-thread-owning-a-data-structure model, which is at the heart of the
coarse-grained concurrency approach, to achieve a higher degree of concurrency. How-
ever, the additional performance comes with a price: these programs are notoriously
hard to develop and prove correct, even when the manipulateddata structures are singly-
linked lists (see, e.g., [5]).

It is hard to employ thread-modular approaches that exploitlocking [8] to ana-
lyze fine-grained concurrent programs because they haveintentional (benign) data-
races. Thus, state-of-the-art shape analyses capable of verifying intricate properties of
fine-grained concurrent heap-manipulating programs, e.g., linearizability (explained in
Sec. 3), track all correlations between the states of all thethreads [1]. This makes these
analyses hard to scale. For example, the shape analysis in [1] handles at most3 threads.

It is interesting to observe, however, that it is often the case that although proving
properties of these programs requires tracking sophisticated correlations between every
thread and the part of the heap that it manipulates, the correlations between the states of
different threads is often irrelevant. Intuitively, this is because fine-grained concurrent
programs are often written in a way whichattemptsto ensure the correct operation
of every threadregardlessof the actions taken by other threads. This programming
paradigm makes these programs an ideal match with our approach explained below.

The Conceptual Framework. To permit the use of heap decomposition in several
settings, we first present it as a parametric abstraction that can be tuned by the analysis
designer in three ways:

Decomposition: Specify along what lines a concrete heap should be decomposed
into (possibly overlapping) subheaps. One of the strengthsof the specification mech-
anism is that the decomposition of a heap depends on its properties. This allows us,
for example, to decompose the state of a concurrent program based on the association
between threads and data-structures in that state, which isusually not known a priori.

Subheap abstraction: Create a bounded abstract heap representation from con-
crete subheaps (which are unbounded). Subheap abstractions can be obtained from ex-
isting whole-heap abstractions that satisfy certain properties.

2



Combiner Sets: The framework is parametric with respect to transformers. Com-
puting sound and precise transformers for statements is quite challenging with a heap
decomposition. Transforming each subheap independently can end up being very im-
precise (or potentially incorrect, if not done carefully),especially when subheaps over-
lap. At the other extreme, combining subheaps together intoa full heap prior to trans-
forming it can be very inefficient and defeats the purpose of using heap decomposition.
Achieving the desired precision and efficiency, without compromising soundness, can
be tricky. Our framework allows the analysis designer to specify only which subheaps
should be combined together for a given transformer, calledcombiner sets. The frame-
work automatically generates a corresponding sound transformer, letting the analysis
designer easily explore alternatives without worrying about soundness.

HeDec. We implemented our conceptual framework for the family of canonical ab-
stractions [20] in a system called HeDec (forHeapDecomposition), which is publicly
available. This implementation retains the parametricityof the conceptual framework,
which allows analysis designers to rapidly prototype different shape analysis algorithms
by defining heap decomposition schemes.

Instances of the Framework. We have used our framework to develop several shape
analyses, including the following, and have implemented these analyses in HeDec.

(a) A shape analysis for sequential programs manipulating singly-linked lists that
abstracts away the correlations between disjoint lists . The resultant shape analysis al-
gorithm emulates the algorithm of [13], with some interpretative overhead. Unlike the
tedious proof of soundness of [13], the soundness of this instance immediately follows
from the soundness of the underlying subheap abstraction.

(b) A new shape analysis for sequential programs manipulating singly-linked lists
and trees by abstracting away the correlations between segments which do not contain
an element pointed-to by a variable. We confirmed that it is precise enough to prove
memory safety and preservation of data-structure invariants. This is encouraging for
scaling shape analysis for programs with densely connectedheaps.

(c) A shape analysis for fine-grained concurrent programs with a bounded number
of threads which is precise enough to prove memory safety andpreservation of data-
structure invariants. Here, we obtain exponential speed-up in terms of time and space,
in comparison to similar whole-heap analysis without decomposition. Our algorithm
goes beyond [8] by supporting fine-grained concurrency and handling programs with
intentional data races.

(d) A shape analysis algorithm for concurrent programs witha bounded number of
threads that manipulate singly-linked lists, which proveslinearizability. The resultant
algorithm is exponentially faster than the one in [1], beingpolynomial in the number
of threads. Our initial empirical results confirm that our algorithm is able to prove lin-
earizability with20 threads, ten times more than in [1].

Main Results. The contributions of this paper can be summarized as follows:
1. We present a generic analysis framework (in an abstract interpretation setting) for

exploiting state decomposition effectively. The main technical contributions are in

3



introducing a family of sound abstract transformers that admit flexibly exploring
the efficiency/precision spectrum.

2. We propose scalable analyses for several interesting problems involving coarse-
grained as well as fine-grained concurrency, including proving linearizability. These
algorithms scale much better (e.g., polynomially) over thenumber of threads than
the previous algorithms for these problems.

3. The implementation of the framework for canonical abstraction is publicly avail-
able, together with the above mentioned analyses, as well asother benchmarks,
which show the benefit of the approach.

Outline of the Paper.In Sec. 2, we demonstrate heap decomposition for fine-grained
concurrent programs. In Sec. 3, we describe an analysis based on heap decomposition
for proving linearizability of non-blocking data structures. In Sec. 4 we present the
technical details of our abstract domain and its transformers. In Sec. 5 we report on our
experiments with HeDec. In Sec. 6, we discuss related work, and in Sec. 7, we conclude
the paper. In App. A, we formally describe decomposition applied to concrete states.
The reader is referred to [14] for technical details on the instances of the framework and
proofs of soundness for arbitrary decompositions. In App. C, we describe optimizations
implemented in HeDec. In App.??, we demonstrate heap decomposition on an example
program with coarse-grained concurrency.

2 Heap Decomposition for Fine-Grained Concurrency

In this section, we develop decomposition schemes for performing shape analysis of
fine-grained concurrent programs and show that HeDec can be used to automatically
obtain shape analysis implementations that are precise enough to prove the desired
properties of programs (the absence of null pointer dereferences, absence of memory
leaks, and data structure invariants) while scaling up to a large number of threads. The
material in this section is presented informally, deferring formal definitions and techni-
cal details to Sec. 4.

2.1 Decomposing Non-blocking Implementations

A Running Example.Fig. 1 shows a simple running example of a non-blocking stack
implementation from [21]. Producers push elements onto thestack by allocating an
element, copying the current global pointer to the top of thestack, connecting the new
element to that copied top, and then using CAS (CompareAnd Swap) to atomically
check that the top of the stack has not changed and replace it with the new element.
Consumers pop elements from the stack by copying the currentglobal pointer to top
and recording its next element and then using CAS to atomically check that the top
of the stack has not changed and replace it with the new top, i.e., the recorded next
element. In both cases, a failed CAS results in a restart.

The goal here is to prove the absence of null pointer dereferences, absence of mem-
ory leaks, and the preservation of data structure invariants, i.e., thatstack points to an
acyclic list.

4



#define EMPTY -1
typedef int data type;
typedef struct node t {

data type d;
struct node t *n

} Node;
typedef struct stack t {

struct node t *Top;
} Stack;

[1] void push(Stack *S, data type v){
[2] Node *x = alloc(sizeof(Node));
[3] x->d = v;
[4] do {
[5] Node *t = S->Top;
[6] x->n = t;
[7] } while (!CAS(&S->Top,t,x));
[8] }

[9] data type pop(Stack *S){
[10] do {
[11] Node *t = S->Top;
[12] if (t == NULL)
[13] return EMPTY;
[14] Node *s = t->n;
[15] data type r = t->d;
[16] } while (!CAS(&S->Top,t,s));
[17] return r;
[18] }

Fig. 1.A non-blocking stack implementation

Concrete Execution.Fig. 2(a) shows an example of two states occurring in the non-
blocking implementation shown in Fig. 1; for now ignore thecorr annotations (which is
used by the linearizability analysis in the next section). The figure shows two consumer
threads and two producer threads. Bothcons1andprod1 can succeed with the CAS
if they are the next threads to be scheduled. Concrete statesare depicted by graphs.
To avoid clutter thedata field is not shown. Hexagonal nodes denote thread objects
and square nodes denote list elements. The program label of every thread is written
inside the hexagon. Edges from text labels to nodes correspond to global pointers (Top).
Labeled edges from thread nodes to list nodes denote thread-local pointer variables (t
andx). Edges between list nodes, labeled byn correspond to thenext field of the list.

Exponential State Space.There are several sources of exponential explosion in the
state space exploration of the stack algorithm. The first oneis the correlation between
the program locations of the different threads. The second source is the next pointers of
the just allocated elements. The stack can grow after the next pointer has already been
set, but before the CAS, thus the next pointers of the different producers can point to
all possible stack elements and have all possible aliasing between each other. The third
source of state-space explosion is the recorded next pointer of the consumer threads.
Note that the state space explosion occurs even if the list has a bounded number of ele-
ments. This is a general problem when maintaining correlations between the properties
of different threads. Exponential blow-ups also occur in sequential programs because
of aliasing. However, for the purpose of our analysis, thesecorrelations are unimportant
and tracking them is pointless and only reduces the efficiency of the analysis.

Heap Decomposition Abstraction.We reduce the size of the state space by decompos-
ing the heap into a set (or tuple) of subheaps and abstractly interpreting the program
over the subheaps.

For each subheap to be used in the decomposition, a user of HeDec specifies the part
of the heap it should include. This is done by defining alocation selection predicate,
which specifies the subset of the nodes in the state for which abstract properties (such as
aliasing, heap-reachability, etc.) are maintained. For each location selection predicate,

5



the program state is projected onto the nodes satisfying that predicate, thus obtaining a
substateof the original state. We refer to the domain of substates pertaining to a location
selection predicatept as thesubdomainof pt.

The Decomposition Scheme.For the purpose of our analysis, we define for each thread
t the location selection predicatept[t] that holds for: (a) the thread object oft, (b) the
objects pointed-to by its local variables (t andx), and (c) the objects pointed-to by the
global variables (Top). In addition, we define the location selection predicateGlobals,
which holds for the objects reachable from global variables.

Top

n

x

n
x t

st

t

n

n

prod1

cons1

prod2

pc=7

cons2

pc=6

pc=14

pc=16

t

S1

Top

n

x

n
x t

st

t

n

n

prod2

cons2

prod1

pc=7

cons1

pc=6

pc=14

pc=16

t

S2

pt[prod1] pt[prod2] pt[cons1] pt[cons2] Globals

Top

x

t

n

prod1

pc=7

Top

n

x

t

prod2

pc=6

Top cons1

pc=14t

Top

t

s

n

cons2

pc=16
Top

n

n

M1 M2 M3 M4

Top

n

x

t

prod1

pc=6

Top

x

t

n

prod2

pc=7

Top

t

s

n

cons1

pc=16

Top cons2

pc=14t

M5 M6 M7 M8 M9

(a) (b)

Fig. 2. (a) Two concrete states in the non-blocking stack implementation shown in Fig. 1; and (b)
The decomposed states abstracting the full states in (a). The names of thesub-domains appear
above the substates

Fig. 2(b) shows the result of applying the decomposition scheme explained above to
the states in Fig. 2(a). Notice that different location selection predicates may occasion-
ally overlap. For example, in the decomposition explained above, the objects reachable
from the global variables appear in each subheap.

Intuitively, the meaning of a substateM , decomposed by a location selection pred-
icatep(v), is the set of all full states that containM and any disjoint substateM ′, such
that the objects inM satisfyp(v) and the objects inM ′ do not satisfyp(v). A sequence
of sets of substates{M1,M5}×{M2,M6}×{M3,M7}×{M4,M8}×{M9} represents
the set of full states obtained by choosing one structure from each subdomain and inter-
secting their meanings. For example, composing the substates{M1,M2,M3,M4,M9}
together yieldsS1 and composing the substates{M5,M6,M7,M8,M9} together yields
S2. The loss of precision by the abstraction can be observed by the fact that other com-
positions, such as{M1, M6, M7, M8, M9} yield full states other thanS1 andS2.

6



State Space Savings.In general, forn threads, if the set of objects reachable from a
thread is bounded, then the number of substates resulting from the reachability-based
decomposition is linear inn (even though the number of full states generated by the
program is exponential inn). Although we do not show the state space reduction in
the figures, one can imagine how running the program withn threads generates states
similar to the ones in Fig. 2(a). By permuting the thread ids between producers threads
and between consumer threads, we obtain an exponential number of full states that are
all reachable by the program execution. Decomposing these states results in a number
of substates that is linear inn.

Transformers.HeDec is guaranteed to be sound, in the sense that when the analysis
terminates all reachable concrete states are represented by some abstract state.

While the abstraction ignores correlations between substates, transforming substates
in isolation using an “independent-attribute” style of analysis [17] leads to debilitating
loss of precision. For example, the analysis executes the statement6: x->n=t where
threadprod1 is scheduled. SubstateM3 does not contain information about the local
variables of threadprod1. Therefore,M3 also represents a stateSbad in which the local
variablest andx of threadprod1 point to the first cell and to the last cell of the list,
respectively. Thus, a conservative transformer of6: x->n=t must emit a warning
about a possible creation of a cyclic list.

To avoid this kind of loss of precision, a user of HeDec can specify which substates,
obtained from different location selection predicates, should be (temporarily) com-
posed by the transformer. This is done in terms ofcombiner sets, which are subsets of
node selection predicates. In this example, for the transformer of6: x->n=t, we can
specify the combiner sets{pt[prod1], pt[prod2]}, {pt[prod1], pt[cons1]}, {pt[prod1],
pt[cons2]}, and{pt[prod1], pt[Globals]}. Then, the generated transformer composes,
separately, the substates{M1,M5} with each of the sets of substates{M2,M6}, {M3,
M7}, {M4,M8}, and{M9}. For the substates composed withM5 (which is the only
substate in theprod1-subdomain that can execute6: x->n=t) the transformer up-
dates then field appropriately, avoiding the false alarm. Finally, thetransformer de-
composes the substates again into each one of the subdomains. The resulting abstract
substates are the same as in Fig. 2, except thatM5 has ann-link between the object
pointed-to byt and the object pointed-to byx and its program counter is7.

This example shows how, by combining a small number (linear in the number of
location selection predicates, in this case) of substates decomposed by different pred-
icates, the transformer is able to increase precision without incurring an unreasonable
time/space blow-up.

A Methodology for Combiner Sets. We now briefly discuss the issue of choosing
combiner sets for a transformer (which is done by the analysis designer in our frame-
work). Every transformer can be thought of as having aframeas well as afootprint.
The frame identifies the part of a program state that is completely irrelevant to the
transformer. Thus, it contains no information that is either used or modified by the trans-
former. The footprint is the complement and contains adequate information to perform
the transformer as precisely as possible.

A straightforward approach for computing the footprint of an operation affecting
several subdomains is combining all the affected subdomains. Unfortunately, this ap-

7



proach might be too expensive. We apply a more efficient approach, which according
to our experience is precise enough. Specifically, for each operation we choose a set of
core subdomainswhich contain the heap objects and variables that participate in the op-
eration. We compute thecore footprintby combining the core subdomains (in practice,
there are usually no more than two). We then independently combine the core footprint
with the other affected subdomains. For example, the core subdomains for a statement
of the form “x->f = g”, wherex of threadt is a local variable andg is a global vari-
able, are the subdomains containing threadt and the subdomain of the global variable
g. The affected subdomains are any subdomains which may aliasthese variables.

Conditional branches pose an interesting puzzle. Note thatbecause the condition es-
sentially filters states it can affectall subdomains. Thus, for a conditional “if (x ==
g)”, we identify the core subdomains to be the ones containing (the nodes pointed-to
by)x andg. However, we will independently combine them with all othersubdomains.

3 Using Decomposition to Prove Linearizability

Linearizability [10] is one of the main correctness criteria for implementations of con-
current data structures. Informally, a concurrent data structure is said to be linearizable
if the concurrent execution of a set of operations on it is equivalent to some sequential
execution of the same operations, in which the global order between non-overlapping
operations is preserved. The equivalence is based on comparing the arguments and
results of operations (responses). The permitted behaviorof the concurrent object is
defined in terms of a specification of the desired behavior of the object in a sequential
setting. Linearizability is a widely-used concept, and there are numerous non-automatic
proofs of linearizability for concurrent objects.

Verifying linearizability is challenging because it requires correlating any concur-
rent execution with a corresponding permitted sequential execution. Verifying lineariz-
ability for concurrent dynamically allocated linked data structures is particularly chal-
lenging, because it requires correlating executions that may manipulate memory states
of unbounded size. Interestingly, proving linearizability does not require directly prov-
ing safety properties such as preservation of data structure invariants. Instead, one can
first prove that the sequential implementation satisfies therequired safety properties
and then prove that the concurrent implementation is linearizable, thereby, satisfies the
safety property. Finally, linearizability of complex systems can be shown by separately
proving the linearizability of each of the individual data structure implementations.

Intuitively, we verify linearizability by representing, in the concrete state, both the
state of the concurrent program and the state of the reference sequential program. Each
element entered into the data structure is correlated at linearization points with the
matching object from the sequential execution. This works well under abstraction when
the differences between the heaps of the sequential and concurrent implementations are
bounded. The details are described in [1].

In order to guarantee that the shape analysis scales-up in the number of threads, in
HeDec we have defined a decomposition scheme that abstracts away the correlations
between the threads (as in Sec. 2). Also, there is no need to track reachability from
program variables. Instead, the subheap abstraction tracks elements whose values in the
sequential and the concurrent implementations are correlated.

8



3.1 A Decomposition Scheme for Linearizability Analysis

In HeDec, we have defined such a decomposition scheme by decomposing the heap
into n+1 components wheren is the number of threads: (i) For each thread the objects
pointed-to by local variables of the thread and objects pointed-to by global variables.
This captures the relationships between local pointer variables and global pointer vari-
ables. Each subheap abstracts away the values of the local variables of the other threads.
(ii) A separate subheap with the objects pointed-to by global variables and the part of
the heap already correlated with the sequential execution.Here, the values of the local
variables of all the threads are abstracted away. We call this thecorr subdomain as it
represents the correlated elements. Fig. 3 shows the effectof applying this decomposi-
tion to the full stateS1 in Fig. 2(a).

Intuitively, this decomposition is appropriate for verifying linearizability for the
program in Fig. 1 because of the following. The list consisting of correlated objects
changes locally when a thread executes a successfulCAS operation. In fact, success-
ful CAS operations are the linearization points for this program. Precisely interpreting
these operations (CAS(&S->Top,t,x) andCAS(&S->Top,t,s)) in the analysis
requires tracking correlations between local and global variables, which we do in the
subheap we decompose for each thread.

The subheap captured by thecorr subdomain is important only during successful
CAS operations, which is when a (non-correlated) node allocated by a thread is passed
into the list. Maintaining the subheap of thecorr subdomain for each thread is wasteful,
and thus we separate these correlations into different subdomains.

The important thing to notice is that all the exponential explosion in the state space
that is due to the number of threads in the full heap is eliminated by this decomposition.
The number of possible subheaps of each thread becomes independent of the number
of threads in the system (for more than two threads).

prod1 prod2 cons1 cons2 corr

Top

x

t

n

prod1

pc=7

corr

Top

n

x

t

prod2

pc=6

corr

corr

Top cons1

pc=14tcorr

Top

t

s

n

cons2

pc=16

corr

corr corr

Top

n

n

n

corr

corr

corr corr

K1 K2 K3 K4 K5

Fig. 3. The decomposed states abstracting the full stateS1 in Fig. 2(a). The names of the sub-
domains appear above each substate

Transformers.The combiner sets used in the transformers of the analysis are the ap-
plication of the methodology described in Sec. 2.1 to this decomposition scheme. For

9



example, copying a global variable into a local variable does not require decomposition
as the executing thread has all the needed information. Copying a local variable into a
global variable combines the subdomain of the executing thread with each of the other
subdomains. Other operations that change the global state such as changes to pointer
fields and performing CAS operations behave the same. Dereferencing a pointer re-
quires composing the subdomain for the current thread and the corr subdomain as the
information on the next element of the stack is not availablein the thread’s subdomain.

4 The Heap Decomposition Abstraction

In this section, we formally define our new parametric heap abstraction and a family of
sound abstract transformers.

4.1 Heap Decomposition as a Cartesian Product of Subheaps

We first define the (parameterized) abstract domain of decomposed heaps. (See Ap-
pendix A for an illustration of the concepts defined below.)

Let (Σ,�,⊗) be a semilattice, where elements ofΣ represent (total and partial)
states,� is a partial ordering onΣ capturing the “is a substate of” relation, and⊗ is
the join operation with respect to� (which composes substates together). We extend
⊗ to sets of states as follows. LetX1 ⊆ Σ andX2 ⊆ Σ. We defineX1 ⊗ X2 =
{σ1 ⊗ σ2 | σ1 ∈ X1, σ2 ∈ X2}. For purposes of abstraction, we shall also make use of
the information ordering defined byσ ⊑ σ′ iff σ′ � σ.

Let (P(Σ),⊑) denote the powerset domain ofΣ with the Hoare ordering: i.e., for
everyX,Y ⊆ Σ, we writeX ⊑ Y iff ∀x ∈ X : ∃y ∈ Y : x ⊑ y.

A substate extractionfunction is a functionη : Σ → Σ that satisfiesη(σ) � σ.
Assume we have a sequence ofk substate extraction functionsη1 to ηk. We use the
k-fold productP(Σ)

k = P(Σ) × · · · × P(Σ) as our domain of abstract states. The
abstraction functionα : P(Σ) → P(Σ)

k is defined by:

α(S) = (η̂1(S), . . . , η̂k(S)) (1)

whereη̂i is the pointwise extension ofηi defined by:

η̂i(S) = {ηi(σ) | σ ∈ S} (2)

We define the meaning, orconcretization, of a tupleI1, . . . , Ik ∈ P(Σ)
k by

γ(I1, . . . , Ik) = I1 ⊗ · · · ⊗ Ik. (3)

Example 1.Let S denote the set of states{S1, S2} shown in Fig. 2(a). For any thread
t, we define the predicatept[t] to be true for: (a) the thread object oft, (b) the objects
pointed-to by its local variables (t andx), and (c) the objects pointed-to by the global
variables (Top). In addition, we define the location selection predicateGlobals, which
holds for the objects reachable from global variables. Given any predicatep, the substate
extraction functionδp maps a stateσ to the substate consisting only of the locations
satisfyingp. We defineη1 to be δpt[prod1], η2 to be δpt[prod2], η3 to be δpt[cons1], η4 to
be δpt[cons2], andη5 to beδGlobals. Now, η1(S1) = M1, η2(S1) = M2, η3(S1) = M3,
η4(S1) = M4, andη5(S1) = M9.

10



4.2 Abstract Transformers

We now turn our attention to the more challenging aspect of decomposition: computing
sound abstract transformers.

The semantics of a program statement is given by a functionτ : Σ → P(Σ).
We make the standard assumption that the transformer is monotonic in the information
order, i.e., ifσ1 ⊑ σ2 thenτ(σ1) ⊑ τ(σ2). We extend this function pointwise toτ :
P(Σ) → P(Σ), by definingτ(S) =

⋃
{τ(σ) | σ ∈ S}. (Note that the extended

transformer is monotone in the information order as well.) For purposes of abstract
interpretation, we need to define a corresponding sound abstract transformer onP(Σ)

k.
Given an input valueI = (I1, . . . , Ik), the abstract transformer needs to compute the
output valueO = (O1, . . . , Ok).

A straightforward sound transformer is the pointwise transformer τpw defined as
follows:

τpw(I1, . . . , Ik) = (η̂1(τ(I1)), . . . , η̂k(τ(Ik))). (4)

Proposition 41 The pointwise transformerτpw is sound. That is, for every input value
I = (I1, . . . , Ik) whereI ∈ P(Σ)k, the following holds:

τ(γ(I)) ⊑ γ(τpw(I)) . (5)

Proof: Note that since� and⊑ are reversed,⊗ is a meet (i.e., greatest lower bound)
operator onP(Σ). Let j be any index in{1, . . . , k}.

I1 ⊗ . . . ⊗ Ik ⊑ Ij (6)

⊲ ⊗ is a meet operator

γ(I) ⊑ Ij (7)

⊲ by (6) and (3)

τ(γ(I)) ⊑ τ(Ij) (8)

⊲ τ is monotone

τ(γ(I)) ⊑ η̂j(τ(Ij)) (9)

⊲ by (8) and sincêηj is extensive

τ(γ(I)) ⊑ η̂1(τ(I1)) ⊗ . . . ⊗ η̂k(τ(Ik)) (10)

⊲ ⊗ is a meet operator

τ(γ(I)) ⊑ γ(η̂1(τ(I1)), . . . , η̂1(τ(Ik)) (11)

⊲ by (3) and (10)

τ(γ(I)) ⊑ γ(τpw(I)) (12)

⊲ by (4) and (11)

⊓⊔

Example 2.While the pointwise transformer is simple and efficient, it can lead to im-
precise results when the transformer has to update a substate that does not have all the

11



relevant information. Recall the example from Sec. 2, and consider the substateM3.
SubstateM3 does not contain information about the local variables of other threads.
Therefore,M3 also represents a stateSbad in which the local variablest andx of
threadprod1 point to the first cell and to the last cell of the list, respectively. Thus, a
conservative transformer of6: x->n=t, whenprod1 serves as the scheduled thread,
must emit a warning about a possible creation of a cyclic list. As explained in Sec. 2, we
can avoid this imprecision by composing substateM3 with other substates (M1) to pro-
duce a more precise substate that can be transformed withoutmaking such worst-case
assumptions. This motivates the following definitions.

A combiner setis a setR ⊆ {1, . . . , k} identifying a set of subheap domains. We
define thepartial concretization functionγR, which combines the information from the
specified set of subdomainsR = {j1, . . . , jm}, as follows:

γR(I1, . . . , Ik) =
⊗

r∈R

Ir = Ij1 ⊗ Ij2 · · · ⊗ Ijm
. (13)

One-Level Composition. We define thepartial transformerτ1[R, i], which computes
the substate corresponding to thei-th subdomain using the subdomains identified byR,
by

τ1[R, i](I) = η̂i(τ(γR(I))). (14)

We use the termone-leveltransformer to indicate that combining (or composing) infor-
mation from a set of subdomains (identified byR above) occurs in one step.

We define aone-level transformer specificationTS to be a tuple(TS1, . . . , TSk)
where eachTSi ⊆ {1, . . . , k}. We define the transformerτ1[TS] by

τ1[TS](I) = (τ1[TS1, 1](I), . . . , τ1[TSk, k](I)). (15)

Theorem 1. For any one-level transformer specificationTS, the transformerτ1[TS] is
sound. That is, for every input valueI ∈ P(Σ)k: τ(γ(I)) ⊑ γ(τ1[TS](I)).

Theorem 2. Let TS = (TS1, . . . , TSk) where eachTSi ⊆ {1, . . . , k} be a one-level
transformer specification. Then, the one-level transformer τ1[TS] is sound. That is, for
every input valueI ∈ P(Σ)k, the following holds:

τ(γ(I)) ⊑ γ(τ1[TS](I)) . (16)

Two-Level Composition. We now present a generalization of the above definition. As
motivation for this generalization, consider a situation where we want to compute an
output valueOj by combining the input values from a set of subdomainsR1 or by
combining the input values from a set of subdomainsR2 (but we are unable to say
which of these combinations to use statically). We could, ofcourse, combine the input
values from the set of subdomainsR1 ∪ R2, but this could be expensive. Instead, we
can utilize the two combinationsindependentlyof each other by using

(η̂j(τ(γR1
(I)))) ⊓ (η̂j(τ(γR2

(I))))

12



as the desired output value. We call transformers derived inthis fashion two-level trans-
formers, as the use of the meet operation⊓ constitutes a second stage of combining
(composing) information.

Let Y be a set of combiner sets. We define thepartial transformerτ2[Y, i], which
computes the substate corresponding to thei-th subdomain using the combiner sets in
Y independently, as follows:

τ2[Y, i](I) =
R∈Y

τ1[R, i](I) (17)

We define atwo-level transformer specificationTS to be a tuple(TS1, . . . , TSk)
where eachTSi ⊆ P({1, . . . , k}). We define the transformerτ2[TS] by

τ2[TS](I) = (τ2[TS1, 1](I), . . . , τ2[TSk, k](I)). (18)

(Note that the computation of the above transformer involves a partial concretization for
everyR in everyTSi. In practice, differentTSi andTSj may have common elements,
and it is sufficient for the transformer implementation to dothe corresponding partial
concretization just once.)

Theorem 3. For any two-level transformer specificationTS, the transformerτ2[TS] is
sound. That is, for every input valueI ∈ P(Σ)k: τ(γ(I)) ⊑ γ(τ2[TS](I)).

Theorem 4. Let TS = (TS1, . . . , TSk) where eachTSi ⊆ 2{1,... ,k} be a two-level
transformer specification. Then, the two-level transformer τ2[TS] is sound. That is, for
every input valueI ∈ P(Σ)k, the following holds:

τ(γ(I)) ⊑ γ(τ2[TS](I)) . (19)

5 Empirical Results

We implemented the HeDec system in Java on top of the TVLA system [12]. HeDec
allows analysis designers to rapidly prototype different shape analysis algorithms by
defining heap decomposition schemes. HeDec, however, is nota panacea — the de-
signer needs to carefully select suitable heap decompositions. Nevertheless, HeDec re-
lieves the designer from the task of developing and implementing the static analysis
algorithms, including the transformers.

Fig. 4 compares the results of our decomposition-based analysis with a full heap
analysis.4

Concurrent Benchmarks. We use the analysis of [1] as the underlying shape analysis.
Both analyses successfully prove linearizability and absence of null dereferences

for the three concurrent programs. For a given number of threads,t, the table shows
the time and the number of states resulting in the analysis oft threads invoking an
arbitrary sequence of operations on a single instance of theanalyzed concurrent data

4 All benchmarks except NBQ were run on a2.4 GHz E6600 Core 2 Duo processor with2 GB
of memory running Linux.

13



structure. Stack is the non-blocking stack example of Sec. 2.1. TLQ is the two-lock
queue implementation described in [16]. NBQ is a non-blocking queue implementation
from [6]. 5

Note that while [1] can analyze at most3 threads, our approach, on the other
hand,runs for15 threads or more. Furthermore, [1] runs out of memory when analyzing
3 threads manipulating a non-blocking-queue.

Sequential Benchmarks. Both analyses successfully prove absence of null derefer-
ences, absence of memory leaks, and data structure invariants for the following sequen-
tial benchmarks:6-list-prepend adds elements, non-deterministically, into one of
6 lists;6-list-join joins6 lists into one list; and4-tree-insert inserts nodes,
non-deterministically, into one of4 binary search trees.

Full Heap Decomposition
Example# of threads# of statessecs.# of substatessecs.
Stack 2 3,424 3 1,608 7

3 10,6296 71 4,103 13
4 MemOut - 7,728 22
20 - - 212,0483,421

TLQ 3 8,783 12 8,911 30
5 44,285 35 23,585 90
8 MemOut - 58,796 307
15 - - 202,5552,122

NBQ 2 39,583 69 20,646 263
3 MemOut - 57,065 694
15 - - 2,017,2801 day

Full Heap Decomposition
Example # of statessecs.# of substatessecs.
6-list-prepend 17,496 16 557 5
6-list-join 37,689 40 1,282 6
4-tree-insert 43,031 44 5,316 29

(a) (b)

Fig. 4.Empirical results for: (a) concurrent benchmarks, and (b) sequential benchmarks

6 Related Work

The framework of Cartesian abstraction via state decomposition we have presented is
relevant to a number of previous lines of work.

Heterogeneous Abstractions.Yahav and Ramalingam [25] defined a notion of het-
erogeneous abstractions. There, Cartesian abstractions are used as a way to achieve
decomposition (or separation, in the terminology of that paper). One contribution of
this paper is to show that that previous analysis is based on a(simple form of) Carte-
sian abstraction. On the other hand, in that work, heterogeneity was used only within
a single structure (to abstract the substructure of interest differently from its context),
where our framework supports different abstractions for different factors of the product,
yielding heterogeneity across different structures. Furthermore, while [25] relies on the
point-wise transformer, we introduce a generalized familyof transformers that allow
(de)composition when transformers are applied. This generalization allows specifying
more precise transformers, and gives us dynamic separation/decomposition.

5 This benchmark was run on a2.66 GHz Quad Xeon with16 GB of memory running Windows
XP 64 bit.

14



Region-based Heap Analyses.Like [25], [9] also decomposes heap abstractions to in-
dependently analyze different parts of the heap. There the analysis/verification problem
is itself decomposed into a set of problem instances, and theheap abstraction is special-
ized for each instance and consists of one subheap for the part of the heap relevant to
the instance, and a coarser abstraction of the remaining part of the heap, e.g. a points-
to graph. In contrast, we simultaneously maintain abstractions of different parts of the
heap and also consider the interaction between these parts.(E.g., our decomposition
dynamically changes as components get connected and disconnected.)

Local Transformers.The importance of modularity for the ability to compute trans-
formers is well known. For example, the first proof rule for procedure calls, therule of
adaptation, was given in [11]. It allows reusing a proof of a procedure body in different
invocations of the procedure.

Local reasoning [18,19] enables reasoning about programs that alter heap-allocated
data by combining claims about disjoints parts of the heap. The use of decomposition
here is intuitively similar to that of separation in [18]. The chief difference is that here a
decomposition may be used that is finer than the transformersin the underlying domain
are precise for, which we react to by performing compositionin the transformers. The
transformers used in analyses based on separation logic [3], on the other hand, when
applied to substates either produce exactly as precise information as on full states, or
produce top. Our treatment of decomposition as an abstraction allows more flexibility
in this regard. This flexibility is central to the concurrency analysis we presented: By
not basing decomposition on disjointness, the analysis does not necessarily need to
be thread-modular. In particular, we have the option of introducing predicates which
track important correlations between different threads’ local states. Approaches based
on disjointness such as [8] have trouble with such situations unless auxiliary state is
added to the invariants, which is beyond the ability of the existing automatic analyses.

Partially Disjunctive Heap Abstraction.Manevich et al. [15] describe a heap abstrac-
tion based on merging sets of graphs with the same set of nodesinto one (approximate)
graph. The abstraction in this paper is based on decomposinga graph into a set of sub-
graphs. The abstraction in [15] is orthogonal to the one in this paper.

Handling Concurrency for an Unbounded Number of Threads.In [2], we use thread
quantification to analyze programs with an unbounded numberof threads. Thread quan-
tification can be thought of as an unbounded variant of a particular decomposition strat-
egy, which we use to abstract away correlations between local variables of different
threads. In the thread quantification analysis, we report that using an additional heap de-
composition abstraction in order to abstract away correlations between values of some
local variables and global variables effects drastic state-space savings. This made the
analysis feasible in the example of proving linearizability of a non-blocking queue im-
plementation.

Proving Linearizability of Data Structures.Shape analysis of concurrent programs with
unbounded dynamic allocation have been investigated. The analysis in [24] addresses
an unbounded number of threads by losing distinctions that cannot be made based on
thread-independent information. This analysis has been extended to verify linearization

15



[1] of programs with a bounded number of threads. Here we use the decomposition
abstraction to define an analysis that can be exponentially faster than that in [1].

Manual linearizability proofs using rely-guarantee have been given in [23], and us-
ing a manual translation to automata followed by an interactive proof in PVS in [4]. Re-
cently, [22] automatically verifies linearizability from manual specifications in a com-
bination of rely-guarantee and separation logic, using theproof technique of [1].

7 Conclusions

We present systematic and generic techniques for scaling upshape analyses using heap
decomposition, implemented in the HeDec system. A user of HeDec can quickly proto-
type a shape analysis by: (a) defining any heap decompositionshe believes is appropri-
ate for the class of programs and properties of interest, and(b) supplying for every type
of program statement any (possibly empty) combiner set she believes supplies the right
balance between efficiency and precision. HeDec then automatically generates a sound
analysis.

Acknowledgements.We thank Noam Rinetzky, Greta Yorsh, Byron Cook, and Thomas
Ball for supplying us with helpful comments on early drafts of the paper. We thank
Daphna Amit for explaining and helping us use her linearizability analysis and com-
menting on earlier drafts of this paper.

References

1. D. Amit, N. Rinetzky, T. Reps, M. Sagiv, and E. Yahav. Comparisonunder abstraction for
verifying linearizability. InCAV, pages 477–490, 2007.

2. G. Arnold, R. Manevich, M. Sagiv, and R. Shaham. Combining shape analyses by inter-
secting abstractions. Lecture Notes in Computer Science, pages 33–48.Springer, January
2006.

3. J. Berdine, C. Calcagno, and P. W. O’Hearn. Symbolic execution withseparation logic. In
Kwangkeun Yi, editor,APLAS 2005, volume 3780 ofLecture Notes in Computer Science,
pages 52–68. Springer-Verlag, 2005.

4. R. Colvin, S. Doherty, and L. Groves. Verifying concurrent data structures by simulation.
Electr. Notes Theor. Comput. Sci., 137(2):93–110, 2005.

5. S. Doherty, D. L. Detlefs, L. Groves, C. H. Flood, V. Luchangco,P. A. Martin, M. Moir,
N. Shavit, and Jr. G. L. Steele. DCAS is not a silver bullet for nonblockingalgorithm design.
In SPAA, pages 216–224, 2004.

6. S. Doherty, L. Groves, V. Luchangco, and M. Moir. Formal verification of a practical lock-
free queue algorithm. InFORTE, pages 97–114, 2004.

7. H. Eo and K. Yi. A differential fixoint iteration method for static analysis specifications.
Technical Memorandum ROPAS-2004-21, Programming Research Laboratory, School of
Computer Science & Engineering, Seoul National University, February 2004.

8. A. Gotsman, J. Berdine, B. Cook, and M. Sagiv. Thread-modularshape analysis. InPLDI,
pages 266–277, 2007.

9. B. Hackett and R. Rugina. Region-based shape analysis with trackedlocations. InPOPL,
pages 310–323, 2005.

10. M. P. Herlihy and J. M. Wing. Linearizability: a correctness condition for concurrent objects.
TOPLAS, 12(3):463–492, 1990.

16



11. C. A. R. Hoare. Procedures and parameters: An axiomatic approach. Lecture Notes in
Mathematics, 188:102–116, 1971.

12. T. Lev-Ami and M. Sagiv. TVLA: A framework for implementing static analyses. InSAS,
pages 280–301, 2000.

13. R. Manevich, J. Berdine, B. Cook, G. Ramalingam, and M. Sagiv.Shape analysis by graph
decomposition. InTACAS, pages 3–18, 2007.

14. R. Manevich, T. Lev-Ami, M. Sagiv, G. Ramalingam, and J. Berdine. Heap decomposition
for concurrent shape analysis. Technical Report TR-2008-01-85453, Tel Aviv University,
January 2008. Available at http://www.cs.tau.ac.il/∼rumster/TR-2007-11-85453.pdf.

15. R. Manevich, M. Sagiv, G. Ramalingam, and J. Field. Partially disjunctive heap abstraction.
In SAS, pages 265–279, 2004.

16. M.M. Michael and M.L. Scott. Simple, fast, and practical non-blocking and blocking con-
current queue algorithms. InPODC, pages 267–275, 1996.

17. F. Nielson, H. R. Nielson, and Chris Hankin.Principles of Program Analysis. Springer,
1999.

18. P. O’Hearn, J. Reynolds, and H. Yang. Local reasoning aboutprograms that alter data struc-
tures.Lecture Notes in Computer Science, 2142, 2001.

19. J. Reynolds. Separation logic: a logic for shared mutable data structures, 2002.
20. M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic. ACM

Transactions on Programming Languages and Systems, 24(3):217–298, 2002.
21. R. K. Treiber. Systems programming: Coping with parallelism. Technical Report RJ 5118,

IBM Almaden Research Center, April 1986.
22. V. Vafeiadis. Shape-value abstraction for verifying linearizability. draft, 2008.
23. V. Vafeiadis, M. Herlihy, T. Hoare, and M. Shapiro. Proving correctness of highly-concurrent

linearisable objects. InPPOPP, pages 129–136, 2006.
24. E. Yahav. Verifying safety properties of concurrent Java programs using 3-valued logic.

ACM SIGPLAN Notices, 36(3):27–40, March 2001.
25. E. Yahav and G. Ramalingam. Verifying safety properties using separation and heteroge-

neous abstractions. InPLDI, pages 25–34, 2004.

A Heap Decomposition for Concrete Heaps

In this section, we illustrate decomposition, using the domain of concrete states (heaps).
(The analyses discussed in the paper exploit decompositionby applying them to abstract
heaps produced by Canonical Abstraction [20].)

A.1 Concrete Domain

We first define the set of concrete states,H, using the notion of a two-level store. For
simplicity, we focus on sequential program states, however, the generalization to multi-
threaded program states is straightforward. We also restrict primitive values to be point-
ers. It is straightforward to extend the definitions to allowprimitive values of other types
(such as integers and booleans). As a result, we will use the terms state and heap inter-
changeably and do the same with the terms substate and subheap.

Let Var be a finite set of pointer variables and letField be a finite set of object
pointer fields. Letlocsbe a (potentially infinite) set of heap locations. LetLoc+ denote
the setlocs∪ {null}, wherenull is a special value not inlocs.

17



Definition A1 (Concrete States)A concrete stateσ is a pair(envσ, fieldσ) where envσ :
Var ⇀ Loc+ is a partial mapping from variables to locations (ornull) and fieldσ :
Field× locs⇀ Loc+ is a partial mapping that maps a pair consisting of a field name
and a location to a location (or the special valuenull).

Note that the setH includestotal states(a stateσ for which bothenvσ andfldσ are
total functions) as well aspartial states(states consisting of partial functions). Partial
states are used to enable heap decomposition as illustratednow. In the sequel, we use
fldσ(u) to stand forfieldσ(fld, u).

We define a partial ordering on concrete states as follows.

Definition A2 (Substate Ordering) Let σ andσ′ be two concrete states. We say that
σ′ is a substate ofσ, written σ′ � σ, if (i) for every program variablex ∈ Var if
envσ

′

is defined forx then so is envσ and envσ
′

(x) = envσ(x); and (ii) for every field
fld ∈ Field and heap locationu ∈ locs, if fieldσ

′

is defined foru then so is fieldσ and
fieldσ′

(u) = fieldσ(u).

Intuitively, σ′ � σ means thatσ′ contains less information thanσ about the values
of variables and fields but agrees withσ on any information it does contain.

Let H⊤ denote the setH augmented with a special element⊤. We extend the re-
lation� to H⊤ by definingσ � ⊤ for everyσ ∈ H⊤. Note that any two elementsσ1

andσ2 of H⊤ have a least upper bound with respect to�, which we denote byσ1 ⊗σ2.
Note thatσ1 ⊗σ2 denotes the result ofcomposingsubstatesσ1 andσ2. We say that two
susbtatesσ1 andσ2 substates areinconsistentif there is no substateσ′ ∈ H such that
σ1 � σ′ andσ2 � σ′. In such a case,σ1 ⊗ σ2 will be ⊤.

A.2 Subheap Extraction

One of the cornerstones of our heap decomposition abstraction is the notion of asub-
heap extractionfunction which, given a heap, extracts the part of the heap that is of
interest. We illustrate this concept below.

We first present a subheap extraction function that works by restricting attention to
a set of locations of interest. Assume that we are given alocation selection predicate
φ : H → (locs→ {0, 1}). Note thatφ is astate-sensitivepredicate: the set of locations
selected depends on the state. This gives us the flexibility to extract subheaps from
different states differently.

For a stateσ, let locsσ(φ), denote the set of locations for which the predicate holds,
i.e., locsσ(φ)

def
= {v ∈ Loc+ | φ(σ)(v) = 1}. The subheap extraction operationδφ :

H → H is defined as:δφ(σ) = (env′, field′), whereenv′
def
= envσ ∩ (Var × locsσ(φ)),

andfield′
def
= fieldσ ∩ (Field× locsσ(φ) × locsσ(φ)). A property of subheap extraction

is that it returns smaller substates, i.e.,δφ(σ) � σ for everyσ ∈ H.

B Proofs for Sec. 4

Proof (of Th. 2).Let j be any index in{1, . . . , k}, and letTSj be the corresponding
combiner set.

18



I1 ⊗ . . . ⊗ Ik ⊑
⊗

r∈TSj

Ir (20)

⊲ since⊗ is monotone, i.e.,X ⊆ Y =⇒
⊗

r∈X

X ⊑
⊗

r∈Y

Y

γ(I) ⊑ γTSj
(I) (21)

⊲ by (20), (13), and (3)

τ(γ(I)) ⊑ τ(γTSj
(I)) (22)

⊲ sinceτ is monotone

τ(γ(I)) ⊑ η̂j(τ(γTSj
(I))) (23)

⊲ by (22) and sincêηj is extensive

τ(γ(I)) ⊑ τ1[TSj , j](I) (24)

⊲ by (23) and (14)

τ(γ(I)) ⊑ τ1[TS1, 1](I) ⊗ . . . ⊗ τ1[TSk, k](I) (25)

⊲ since⊗ is a meet operator

τ(γ(I)) ⊑ γ(τ1[TS1, 1](I), . . . , τ1[TSk, k](I)) (26)

⊲ by (3) and (25)

τ(γ(I)) ⊑ γ(τ1[TS](I))

⊲ by (15) and (26)

⊓⊔

Proof (of Th. 4).Let j be any index in{1, . . . , k}, let TSj ⊆ P({1, · · · , k}) be the
corresponding set of combiner sets, and letY ⊆ {1, · · · , k} be a combiner set inTSj .

τ(γ(I)) ⊑ τ1[R, j](I) (27)

by (24) inTh. 2

τ(γ(I)) ⊑
R∈TSj

τ1[R, j](I) (28)

by (27) and the properties of⊓

τ(γ(I)) ⊑ τ2[TSj , j](I) (29)

by (28) and (17)

τ(γ(I)) ⊑ τ2[TSk, k](I) ⊗ . . . ⊗ τ2[TSk, k](I) (30)

by (29) and since⊗ is a meet operator

τ(γ(I)) ⊑ γ(τ2[TS1, 1](I), . . . , τ2[TSk, k](I)) (31)

by (31) and (3)

τ(γ(I)) ⊑ γ(τ2[TS](I))

by (18) and (31)

⊓⊔

19



C HeDec System Optimizations

In this section we explain some of the important implementation details of the HeDec
system.

HeDec implements standard fixed point iteration techniqueswhere the abstract ele-
ments are tuples of sets of substates, one set per location selection predicate.

C.1 Incremental Transformers

We optimize the fixed point iteration by reusing the results from previous iterations.
Without composition, the transformers are distributive and thus they are trivially incre-
mental. The challenge is handling changes to sets from different tuples when they are
combined. Combining sets is defined asX1 ⊗ X2 = {σ1 ⊗ σ2 | σ1 ∈ X1, σ2 ∈ X2}
whereσ1 ⊗ σ2 is an operation that combines individual substates.

For two sets of substatesX andY , let ∆X and∆Y be new substates for each set,
respectively. Now, we would like to computeτ((X ⊔ ∆X) ⊗ (Y ⊔ ∆Y )) by reusing
τ(X ⊗Y ). We use a known technique in computing differential fixpointiterations (see,
e.g., [7]), and use the transformer

τ((X ⊔ ∆X) ⊗ (Y ⊔ ∆Y )) = τ(X ⊗ Y )⊔
τ(X ⊗ ∆Y )⊔
τ(Y ⊗ ∆X)⊔
τ(∆X ⊗ ∆Y )

where the first joined element is taken from the previous iteration.
The use of incremental transformer is very important for efficiency. For example, on

the non-blocking stack of Sec. 2.1, the incremental transformers improve the running
times of5 threads from206 seconds to36 seconds and of10 threads from2612 seconds
to 211 seconds. More than10-fold improvement that increases as the complexity of the
problem and the number of threads increase.

C.2 Optimized Composition for Sets of Substates

One of the costly operations in our framework is the combination operator on setsX⊗Y
(which is implemented using the algorithm from [2]). The number of substates that need
to be combined grows exponentially with the number of sets. In our benchmarks, we
usually compose at most3 sets but this is still very costly, in practice.

However, many of the pairs of substates that are combined areinconsistent, and thus
do not contribute substates in the output. We therefore use pruning techniques to avoid
combining many inconsistent substates unnecessarily.

For a stateσ ∈ X, we say thatsignatureX(σ) is a signature ofσ in X, if for every
σ′ ∈ X, we have the property that ifsignatureX(σ) 6= signatureX(σ′) thenσ andσ′ are
inconsistent. We use signatures based on unary predicates to combine sets of substates
by:

X ⊗ Y = {σ1 ⊗ σ2 | signatureX∪Y (σ1) = signatureX∪Y (σ2)} .

We have observed, in our experiments, that using the optimized combination for sets
reduces the amount of useless combinations operations by upto a factor of 100.

20



C.3 Case Study: Proving Linearizability for a Two-Lock Queue

[1] #define EMPTY -1
[2] typedef struct queue t {
[3] struct element t *Head;
[4] struct element t *Tail;
[5] lock type HLock;
[6] lock type TLock;
[7] } Queue;

// @pre Queue->Head!=NULL &&
// Queue->Tail!=NULL
[8] void enqueue(Queue *Q, data type v){
[9] Node *x = alloc(sizeof(Node));
[10] x->d = v;
[11] lock(&Q->TLock);
[12] Node *t = Q->Tail;
[13] t->n = x;
[14] Q->Tail = x;
[15] unlock(&Q->TLock);
[16] }

// @pre Queue->Head!=NULL &&
// Queue->Tail!=NULL

[17] data type dequeue(Queue *Q){
[18] lock(&Q->HLock);
[19] Node *h = Q->Head;
[20] Node *s = h->n;
[21] if (s == NULL)
[22] unlock(&Q->HLock);
[23] return EMPTY;
[24] data type r = s->d;
[25] Q->Head = s;
[26] unlock(&Q->HLock);
[27] return r;
[28] }

Fig. 5.Two-lock queue implementation

A running exampleFig. 5 shows the two-lock queue implementation described in[16].
The queue has Head and Tail pointers, each protected with itsown lock. Note that
although the implementation uses locks, the algorithm allows benign data-races in case
the queue is empty, i.e., the Head and Tail pointers are aliased.

Concrete ExecutionFig. 6 shows one example of a store occurring in the two-lock
queue implementation shown in Fig. 5. The figure shows two consumer threads and
two producer threads. The elements of the heap already correlated with the sequential
execution are marked withcorr. Locks are depicted by arrows to the locking thread.

prod1 andcons2are waiting in the corresponding lock acquire point, waiting for
the lock.cons1finished dequeuing an element from the queue and is about to release
the lock. Finally,prod2 has already added an element to the tail of the queue, but has
not yet updated the Tail pointer. The source of exponential explosion in the state space
exploration of the two-lock queue algorithm is the correlation between the program
locations of the different threads as in the coarse-grainedconcurrency.

The Decomposition SchemeWe refine the decomposition scheme of Sec. 2.1 by adding
a subdomain to represent the locks. The subheap contains theobjects pointed-to by
global variables and for each lock, the thread object acquiring it. Fig. 7 shows the the
effect of applying this decomposition to the full state in Fig. 6.

The important thing to notice is that all the exponential explosion in the state space
that existed in the full heap is eliminated by this decomposition. The possible subheaps
of each thread become independent of the number of threads inthe system (for more
than2 threads). The subheaps of the locks subdomain ({T3}) only contain the thread
information of2 threads at most at a time.

21



R60mm

Tail

n
h

n

x

x

t

s

n

n

cons1 prod1

cons2

pc=18

pc=26 pc=11

pc=14

prod2

Head

TLock

HLock

corr

corr

corr

corr

Fig. 6.A concrete memory in the two-lock queue implementation shown in Fig. 5

cons1 cons2 Locks

Tail

h n

cons1

pc=26

Head

corr

corr

corr

s

TLock Tail

cons2

pc=18

Head

corr

corr

Tail

t

cons1

pc=26

pc=14

prod2

Head

corr

corr

s

TLock

HLock

T1 T2 T3

prod1 prod2 corr

Tail

x

prod1

pc=11

Head

corr

corr

Tail

x

t

n

pc=14

prod2

Head

corr

corr

HLock

Tail

n

n

n

Head

corr

corr

corr

corr

T4 T5 T6

Fig. 7. The decomposed states abstracting the full state in Fig. 6. The names of thesub-domains
appear above each substate

22



TransformersThe compositions described in Sec. 2.1 work here as well. In the added
operations of acquiring and releasing a lock, the subdomainof the currently executing
thread is combined with the locks subdomain and each of the other components.

23


