Heap Decomposition for Concurrent Shape Analysis

Tel Aviv University, School of Computer Science,
Technical Report TR-2007-11-85453

R. Manevich *, T. Lev-Ami'-**, M. Sagi, G. Ramalingarh, and J. Berding

! Tel Aviv University, {r unst er , nsagi v, t | a}@ost . tau. ac.i |
2 Microsoft Research Indigr ama@ri cr osof t . com
3 Microsoft Research Cambridgiej b@ri cr osoft . com

Abstract. We demonstrate shape analyses that can achieve a state space reduc-
tion exponential in the number of threads compared to the state-ofithedy-

ses, while retaining sufficient precision to verify sophisticated propestiek as
linearizability. The key idea is to abstract the global heap by decomposdimtg it

(not necessarily disjoint) subheaps, abstracting away some corrslagbmeen

them. These new shape analyses are instances of an analysis frarbased on

heap decomposition. This framework allows rapid prototyping of comgtigtic
analyses by providing efficient abstract transformers given sjgecified decom-
position schemes. Initial experiments confirm the value of heap deitigman

scaling concurrent shape analyses.

1 Introduction

The problem of verifying concurrent programs that maniflaeap-allocated data
structures is challenging: it requires considering aality interleaved threads manipu-
lating unbounded data structures. Both heap-allocatedsdatctures and concurrency
can introduce state explosion. Their combination only reakatters worse. This paper
develops new static analysis algorithms that address #te space explosion problem
in a systematic and generic way. The result of these anatgsebe used to automati-
cally establish interesting properties of concurrent heamipulating programs such as
the absence of null dereferences, the absence of memosy tbakpreservation of data
structure invariants, ardhearizability [10].

The Intuition. Typical programs manipulate a large number of (instancegsiata
structures (possibly nested within other data structutesgh individual data structure
can usually be in one of several different states (even irfbatract representation). This
can lead to a combinatorial explosion in the number of distaistract states that can
arise during abstract interpretation.

The essential idea we pursue is thatie€omposinghe heap into multiple subheaps
and abstracting away some correlations between the subhBapomposition allows
reusing subheaps that were decomposed from different hisaissrepresenting a set of

* This research was partially supported by the Clore Fellowship Programme
** Supported by an Adams Fellowship through the Israel Academy of &eseand Humanities.

heaps more compactly (and more abstractly). For exampiesider a program main-
taining &k disjoint lists. A powerset-based shape analysis such aerteen [20] uses
a lattice whose height is exponential/in An abstraction that ignores the correlations
between thé: lists reduces the lattice height to be lineakineading to exponentially
faster analysis. (The savings come from not maintainingctiveelations between dif-
ferent states of the different lists, which we observe aterpirrelevant for a specific
property of interest.) Similar situations arise in the kafanultithreaded programs dis-
cussed earlier, where the size of the state space is a faraftiie number of threads
rather than the number of data structures. In this paper|loxe decomposing the heap
into non-disjoint (i.e., overlapping) subheaps, whichiportant for handling programs
with fine-grained concurrency (where different threads siamultaneously access the
same objects) in a thread-modular way.

Fine-Grained Concurrency. Fine-grained concurrent heap-manipulating programs al-
low multiple threads to use the same data structureiltaneouslyThey trade the sim-
plicity of the single-thread-owning-a-data-structuredalp which is at the heart of the
coarse-grained concurrency approach, to achieve a higigeeel of concurrency. How-
ever, the additional performance comes with a price: thesgrams are notoriously
hard to develop and prove correct, even when the maniputiatiacstructures are singly-
linked lists (see, e.g., [5]).

It is hard to employ thread-modular approaches that expdoking [8] to ana-
lyze fine-grained concurrent programs because they haeational (benign) data-
races. Thus, state-of-the-art shape analyses capableifying intricate properties of
fine-grained concurrent heap-manipulating programs, kngarizability (explained in
Sec. 3), track all correlations between the states of alihtteads [1]. This makes these
analyses hard to scale. For example, the shape analysisiaridles at most threads.

It is interesting to observe, however, that it is often theecthat although proving
properties of these programs requires tracking sophisticzorrelations between every
thread and the part of the heap that it manipulates, thelatimes between the states of
different threads is often irrelevant. Intuitively, thshecause fine-grained concurrent
programs are often written in a way whiettemptsto ensure the correct operation
of every threadegardlessof the actions taken by other threads. This programming
paradigm makes these programs an ideal match with our agipso@lained below.

The Conceptual Framework. To permit the use of heap decomposition in several
settings, we first present it as a parametric abstractidrcirabe tuned by the analysis
designer in three ways:

Decomposition: Specify along what lines a concrete heap should be decompose
into (possibly overlapping) subheaps. One of the strengthke specification mech-
anism is that the decomposition of a heap depends on its piegeThis allows us,
for example, to decompose the state of a concurrent proges@doon the association
between threads and data-structures in that state, whictually not known a priori.

Subheap abstraction: Create a bounded abstract heap representation from con-
crete subheaps (which are unbounded). Subheap abstsactinbe obtained from ex-
isting whole-heap abstractions that satisfy certain progse

Combiner Sets: The framework is parametric with respect to transformemsnC
puting sound and precise transformers for statements is gballenging with a heap
decomposition. Transforming each subheap independeatiyend up being very im-
precise (or potentially incorrect, if not done carefullgypecially when subheaps over-
lap. At the other extreme, combining subheaps togetheraritdl heap prior to trans-
forming it can be very inefficient and defeats the purposesaofgiheap decomposition.
Achieving the desired precision and efficiency, without poomising soundness, can
be tricky. Our framework allows the analysis designer tacgpenly which subheaps
should be combined together for a given transformer, cakedbiner sets. The frame-
work automatically generates a corresponding sound wamsfr, letting the analysis
designer easily explore alternatives without worryingttsmundness.

HeDec. We implemented our conceptual framework for the family afiazical ab-
stractions [20] in a system called HeDec (fdeap Decomposition), which is publicly
available. This implementation retains the parametrioftthe conceptual framework,
which allows analysis designers to rapidly prototype défe shape analysis algorithms
by defining heap decomposition schemes.

Instances of the Framework. We have used our framework to develop several shape
analyses, including the following, and have implementesd¢hanalyses in HeDec.

(a) A shape analysis for sequential programs manipulaimgyslinked lists that
abstracts away the correlations between disjoint listse. fEisultant shape analysis al-
gorithm emulates the algorithm of [13], with some interpt®e overhead. Unlike the
tedious proof of soundness of [13], the soundness of thiamee immediately follows
from the soundness of the underlying subheap abstraction.

(b) A new shape analysis for sequential programs manimgjaingly-linked lists
and trees by abstracting away the correlations betweenesggrwhich do not contain
an element pointed-to by a variable. We confirmed that it &ise enough to prove
memory safety and preservation of data-structure invemiaFhis is encouraging for
scaling shape analysis for programs with densely connéetes.

(c) A shape analysis for fine-grained concurrent prograntis a&sbounded number
of threads which is precise enough to prove memory safetypaeservation of data-
structure invariants. Here, we obtain exponential spgeihterms of time and space,
in comparison to similar whole-heap analysis without degosition. Our algorithm
goes beyond [8] by supporting fine-grained concurrency amlling programs with
intentional data races.

(d) A shape analysis algorithm for concurrent programs witlounded number of
threads that manipulate singly-linked lists, which proliesarizability. The resultant
algorithm is exponentially faster than the one in [1], bepwdynomial in the number
of threads. Our initial empirical results confirm that ougaithm is able to prove lin-
earizability with20 threads, ten times more than in [1].

Main Results. The contributions of this paper can be summarized as follows
1. We present a generic analysis framework (in an abstrearpiretation setting) for
exploiting state decomposition effectively. The main t@chl contributions are in

introducing a family of sound abstract transformers thahiadlexibly exploring
the efficiency/precision spectrum.

2. We propose scalable analyses for several interestiniglgms involving coarse-
grained as well as fine-grained concurrency, includingipigphinearizability. These
algorithms scale much better (e.g., polynomially) overribenber of threads than
the previous algorithms for these problems.

3. The implementation of the framework for canonical alzsioa is publicly avail-
able, together with the above mentioned analyses, as welthes benchmarks,
which show the benefit of the approach.

Outline of the Paper.In Sec. 2, we demonstrate heap decomposition for fine-gtaine
concurrent programs. In Sec. 3, we describe an analysisl lmesbeap decomposition
for proving linearizability of non-blocking data strucas. In Sec. 4 we present the
technical details of our abstract domain and its transfesiria Sec. 5 we report on our
experiments with HeDec. In Sec. 6, we discuss related workjraSec. 7, we conclude
the paper. In App. A, we formally describe decompositionliggipto concrete states.
The reader is referred to [14] for technical details on tistginces of the framework and
proofs of soundness for arbitrary decompositions. In Appv€describe optimizations
implemented in HeDec. In Apf?.?, we demonstrate heap decomposition on an example
program with coarse-grained concurrency.

2 Heap Decomposition for Fine-Grained Concurrency

In this section, we develop decomposition schemes for peifg shape analysis of
fine-grained concurrent programs and show that HeDec carsédx to automatically
obtain shape analysis implementations that are precisagéntm prove the desired
properties of programs (the absence of null pointer dezafsrs, absence of memory
leaks, and data structure invariants) while scaling up &rgel number of threads. The
material in this section is presented informally, defegriormal definitions and techni-
cal details to Sec. 4.

2.1 Decomposing Non-blocking Implementations

A Running ExampleFig. 1 shows a simple running example of a non-blocking stack
implementation from [21]. Producers push elements ontosthek by allocating an
element, copying the current global pointer to the top ofstaek, connecting the new
element to that copied top, and then using CA®rhpareAnd Swap) to atomically
check that the top of the stack has not changed and repladgthitive new element.
Consumers pop elements from the stack by copying the cugtehal pointer to top
and recording its next element and then using CAS to atoipichkck that the top
of the stack has not changed and replace it with the new tep,the recorded next
element. In both cases, a failed CAS results in a restart.

The goal here is to prove the absence of null pointer denedee absence of mem-
ory leaks, and the preservation of data structure invagjéet, thast ack points to an
acyclic list.

#define EMPTY -1
typedef int data.type;
typedef struct node t {
data_type d;
struct node t *n {9 datatype pop(Stack *S){
} Node; [10] do {
typedef struct stack t { [11] Node *t = S->Top;
struct node t *Top; [12] if (t == NULL)
} Stack; [13] return EMPTY;
[14] Node *s = t->n;
{11 void push(Stack *S, datatype v){ [15] datatype r = t->d;
[2] Node *x = al |l oc(sizeof (Node)); [16] } while (!CAS(&S->Top,t,s));
[3] x->d = v; [17] return r;
[4] do { [}
[5] Node *t = S->Top;
(6] X->n = t;
[71 } while (!CAS(&S->Top,t,x));
s}

Fig. 1. A non-blocking stack implementation

Concrete ExecutionFig. 2(a) shows an example of two states occurring in the non-
blocking implementation shown in Fig. 1; for now ignore twer annotations (which is
used by the linearizability analysis in the next sectiome Tigure shows two consumer
threads and two producer threads. Botinslandprodl can succeed with the CAS

if they are the next threads to be scheduled. Concrete siadedepicted by graphs.
To avoid clutter thedat a field is not shown. Hexagonal nodes denote thread objects
and square nodes denote list elements. The program labekof thread is written
inside the hexagon. Edges from text labels to nodes comeldpaylobal pointersTop).
Labeled edges from thread nodes to list nodes denote thweabpointer variablest (
andx). Edges between list nodes, labeledbgorrespond to thaext field of the list.

Exponential State SpacelThere are several sources of exponential explosion in the
state space exploration of the stack algorithm. The firstigtiee correlation between
the program locations of the different threads. The secondce is the next pointers of
the just allocated elements. The stack can grow after thepmémter has already been
set, but before the CAS, thus the next pointers of the diffiepeoducers can point to
all possible stack elements and have all possible aliaghgden each other. The third
source of state-space explosion is the recorded next pahthe consumer threads.
Note that the state space explosion occurs even if the lisaeounded number of ele-
ments. This is a general problem when maintaining coraiatbetween the properties
of different threads. Exponential blow-ups also occur iquamntial programs because
of aliasing. However, for the purpose of our analysis, tleeseelations are unimportant
and tracking them is pointless and only reduces the effigiethe analysis.

Heap Decomposition AbstractioWe reduce the size of the state space by decompos-
ing the heap into a set (or tuple) of subheaps and abstrantdypreting the program
over the subheaps.

For each subheap to be used in the decomposition, a user &d-+giecifies the part
of the heap it should include. This is done by defininip@ation selection predicate
which specifies the subset of the nodes in the state for wiistnact properties (such as
aliasing, heap-reachability, etc.) are maintained. Fohdacation selection predicate,

the program state is projected onto the nodes satisfyirigptiedicate, thus obtaining a
substatef the original state. We refer to the domain of substatemeng to a location
selection predicatgt as thesubdomairof pt.

The Decomposition Schemieor the purpose of our analysis, we define for each thread
t the location selection predicapd|t] that holds for: (a) the thread object ©f(b) the
objects pointed-to by its local variablets éndx), and (c) the objects pointed-to by the
global variablesTop). In addition, we define the location selection predidatebals
which holds for the objects reachable from global variables

pt[prod1]

prodl

pt[prod2] ptconsl] | pt[cons2] |Globals

My h
n
Top cons2
Mg My

Fig. 2. (a) Two concrete states in the non-blocking stack implementation shown.it;Rigd (b)
The decomposed states abstracting the full states in (a). The namessobthemains appear
above the substates

Fig. 2(b) shows the result of applying the decompositioreand explained above to
the states in Fig. 2(a). Notice that different location séte predicates may occasion-
ally overlap. For example, in the decomposition explainealva, the objects reachable
from the global variables appear in each subheap.

Intuitively, the meaning of a substald, decomposed by a location selection pred-
icatep(v), is the set of all full states that contald and any disjoint substafe/’, such
that the objects i/ satisfyp(v) and the objects i/’ do not satisfyp(v). A sequence
of sets of substategS\f;, M5} x { Mo, Mg} x { M3, M7} x{ My, Mg} x{ My} represents
the set of full states obtained by choosing one structurra frach subdomain and inter-
secting their meanings. For example, composing the sels$taf; , Mo, M3, My, Mo}
together yieldss; and composing the substatg¥/s, Mg, M7, Mg, My} together yields
So. The loss of precision by the abstraction can be observeledfatt that other com-
positions, such a§M;, Mg, M7, Ms, My} yield full states other thaf; and.Ss.

State Space Savings$n general, forn threads, if the set of objects reachable from a
thread is bounded, then the number of substates resulting thie reachability-based
decomposition is linear im (even though the number of full states generated by the
program is exponential in). Although we do not show the state space reduction in
the figures, one can imagine how running the program withreads generates states
similar to the ones in Fig. 2(a). By permuting the thread ietsMeen producers threads
and between consumer threads, we obtain an exponentialenwhfull states that are

all reachable by the program execution. Decomposing thesessresults in a number
of substates that is linear in

Transformers.HeDec is guaranteed to be sound, in the sense that when thsiana
terminates all reachable concrete states are represgnssuhie abstract state.

While the abstraction ignores correlations between susstieansforming substates
in isolation using an “independent-attribute” style of lyses [17] leads to debilitating
loss of precision. For example, the analysis executes @tersen6: x- >n=t where
threadprod1l is scheduled. Substafe; does not contain information about the local
variables of threagrodl. Therefore M3 also represents a staig, in which the local
variablest andx of threadprodl point to the first cell and to the last cell of the list,
respectively. Thus, a conservative transforme6of x- >n=t must emit a warning
about a possible creation of a cyclic list.

To avoid this kind of loss of precision, a user of HeDec carcgp&vhich substates,
obtained from different location selection predicateyuéth be (temporarily) com-
posed by the transformer. This is done in termsahbiner setswhich are subsets of
node selection predicates. In this example, for the transfoof6: x- >n=t , we can
specify the combiner setgt[prod1], ptprod2]}, {pt[prod1], pticonsl}, {pt[prodl],
ptlcons2}, and {pt[prod1], pt{Globalg}. Then, the generated transformer composes,
separately, the substatgsf, , M5} with each of the sets of substate®ls, Ms}, { M3,
Mz}, {My, Mg}, and{My}. For the substates composed with; (which is the only
substate in theprod1l-subdomain that can execute x->n=t) the transformer up-
dates then field appropriately, avoiding the false alarm. Finally, tn@nsformer de-
composes the substates again into each one of the subdoflagnsesulting abstract
substates are the same as in Fig. 2, exceptMyhas ann-link between the object
pointed-to byt and the object pointed-to by and its program counter &

This example shows how, by combining a small number (lineahé number of
location selection predicates, in this case) of substatesrdposed by different pred-
icates, the transformer is able to increase precision withurring an unreasonable
time/space blow-up.

A Methodology for Combiner Sets. We now briefly discuss the issue of choosing
combiner sets for a transformer (which is done by the amalyssigner in our frame-
work). Every transformer can be thought of as havinigame as well as dootprint
The frame identifies the part of a program state that is camlglérrelevant to the
transformer. Thus, it contains no information that is eiteed or modified by the trans-
former. The footprint is the complement and contains adegudormation to perform
the transformer as precisely as possible.

A straightforward approach for computing the footprint of @peration affecting
several subdomains is combining all the affected subdasnéinfortunately, this ap-

proach might be too expensive. We apply a more efficient ambrowhich according
to our experience is precise enough. Specifically, for epehation we choose a set of
core subdomainghich contain the heap objects and variables that parteipahe op-
eration. We compute thaore footprintby combining the core subdomains (in practice,
there are usually no more than two). We then independenthbaee the core footprint
with the other affected subdomains. For example, the cdrdauains for a statement
of the form "x- >f = g”, wherex of threadt is a local variable and is a global vari-
able, are the subdomains containing threatd the subdomain of the global variable
g. The affected subdomains are any subdomains which maythéas variables.
Conditional branches pose an interesting puzzle. Noté#euse the condition es-
sentially filters states it can affeall subdomains. Thus, for a conditionalf* (x ==
g) 7, we identify the core subdomains to be the ones contairting fodes pointed-to
by) x andg. However, we will independently combine them with all oteebdomains.

3 Using Decomposition to Prove Linearizability

Linearizability[10] is one of the main correctness criteria for implemeatet of con-
current data structures. Informally, a concurrent datzcttre is said to be linearizable
if the concurrent execution of a set of operations on it iSvadent to some sequential
execution of the same operations, in which the global orééwvéen non-overlapping
operations is preserved. The equivalence is based on cogphe arguments and
results of operations (responses). The permitted beha¥itdre concurrent object is
defined in terms of a specification of the desired behaviohefdbject in a sequential
setting. Linearizability is a widely-used concept, and¢here numerous non-automatic
proofs of linearizability for concurrent objects.

Verifying linearizability is challenging because it retpg correlating any concur-
rent execution with a corresponding permitted sequentiad@etion. Verifying lineariz-
ability for concurrent dynamically allocated linked dateustures is particularly chal-
lenging, because it requires correlating executions ttzgt manipulate memory states
of unbounded size. Interestingly, proving linearizapitipes not require directly prov-
ing safety properties such as preservation of data steigtvariants. Instead, one can
first prove that the sequential implementation satisfiesrélggired safety properties
and then prove that the concurrent implementation is limable, thereby, satisfies the
safety property. Finally, linearizability of complex sgats can be shown by separately
proving the linearizability of each of the individual datausture implementations.

Intuitively, we verify linearizability by representingy ithe concrete state, both the
state of the concurrent program and the state of the refergeuential program. Each
element entered into the data structure is correlated aafipation points with the
matching object from the sequential execution. This wor&l under abstraction when
the differences between the heaps of the sequential andicentimplementations are
bounded. The details are described in [1].

In order to guarantee that the shape analysis scales-up mutnber of threads, in
HeDec we have defined a decomposition scheme that abstrveaystiae correlations
between the threads (as in Sec. 2). Also, there is no needdk teachability from
program variables. Instead, the subheap abstractiorstedelnents whose values in the
sequential and the concurrent implementations are cterkla

3.1 A Decomposition Scheme for Linearizability Analysis

In HeDec, we have defined such a decomposition scheme by gesaomg the heap
into n + 1 components where is the number of threads: (i) For each thread the objects
pointed-to by local variables of the thread and objectstedito by global variables.
This captures the relationships between local pointeaisées and global pointer vari-
ables. Each subheap abstracts away the values of the |oizdilea of the other threads.
(ii) A separate subheap with the objects pointed-to by dlehgables and the part of
the heap already correlated with the sequential executiere, the values of the local
variables of all the threads are abstracted away. We callttigicorr subdomain as it
represents the correlated elements. Fig. 3 shows the effagiplying this decomposi-
tion to the full stateS; in Fig. 2(a).

Intuitively, this decomposition is appropriate for verifg linearizability for the
program in Fig. 1 because of the following. The list conaigtof correlated objects
changes locally when a thread executes a succeGs8ftloperation. In fact, success-
ful CAS operations are the linearization points for this programeciBely interpreting
these operation<TAS(&S- >Top, t, X) andCAS(&S- >Top, t, s)) in the analysis
requires tracking correlations between local and globehtses, which we do in the
subheap we decompose for each thread.

The subheap captured by therr subdomain is important only during successful
CAS operations, which is when a (non-correlated) node allachyea thread is passed
into the list. Maintaining the subheap of tberr subdomain for each thread is wasteful,
and thus we separate these correlations into differentsuhohs.

The important thing to notice is that all the exponentiallegjn in the state space
that is due to the number of threads in the full heap is eliteith@dy this decomposition.
The number of possible subheaps of each thread becomesmtkyt of the number
of threads in the system (for more than two threads).

prodl prod2 consl cons2 corr

Top cons1

K3

Fig. 3. The decomposed states abstracting the full staten Fig. 2(a). The names of the sub-
domains appear above each substate

Transformers. The combiner sets used in the transformers of the analysitharap-
plication of the methodology described in Sec. 2.1 to thisodgposition scheme. For

example, copying a global variable into a local variablesdoet require decomposition
as the executing thread has all the needed information. i6@g@ylocal variable into a
global variable combines the subdomain of the executineptthivith each of the other
subdomains. Other operations that change the global stateas changes to pointer
fields and performing CAS operations behave the same. Dergfiag a pointer re-
quires composing the subdomain for the current thread andattn subdomain as the
information on the next element of the stack is not availabtée thread’s subdomain.

4 The Heap Decomposition Abstraction

In this section, we formally define our new parametric heagirabtion and a family of
sound abstract transformers.

4.1 Heap Decomposition as a Cartesian Product of Subheaps

We first define the (parameterized) abstract domain of deosatpheaps. (See Ap-
pendix A for an illustration of the concepts defined below.)

Let (X, %, ®) be a semilattice, where elements Bfrepresent (total and partial)
states,< is a partial ordering orX’ capturing the “is a substate of” relation, agdis
the join operation with respect tg (which composes substates together). We extend
® to sets of states as follows. L&f; C Y and X, C Y. We defineX; @ Xy =
{01 ® 02 | 01 € X1,02 € X5}. For purposes of abstraction, we shall also make use of
the information ordering defined by C o' iff ¢/ < 0.

Let (P(X), C) denote the powerset domain Bfwith the Hoare ordering: i.e., for
everyX, Y C X wewrite X CYiff vee X:JyeY :xCy.

A substate extractiofunction is a functiory : X — X that satisfies)(c) < o.
Assume we have a sequencekofubstate extraction functiong to 7. We use the
k-fold productP(X)* = P(X) x --- x P(X) as our domain of abstract states. The

abstraction functiom : P(X) — P(X)" is defined by:

a(S) = (M(S), ...,k (S)) D
wherey; is the pointwise extension of defined by:
7i(S) = A{ni(o) | o € S})
We define the meaning, aoncretizationof a tuplel, ... , Iy € P(Z)k by
Yy) =0 @ @ I, (3)

Example 1.Let S denote the set of statds$, S>} shown in Fig. 2(a). For any thread
t, we define the predicagt[t] to be true for: (a) the thread object ©f(b) the objects
pointed-to by its local variable$ (andx), and (c) the objects pointed-to by the global
variables Top). In addition, we define the location selection predidatebals which
holds for the objects reachable from global variables. Gamy predicate, the substate
extraction functions, maps a state to the substate consisting only of the locations
satisfyingp. We definer; to be dpyprod1), 72 t0 D€ dptprodz)s 73 10 D€ dpticonsy, 714 1O
beapt[consa, and7’]5 to beéGIobaIs- Now, 771(51) = My, 7’)2(51) = Mo, 7]3(51) = Ms,
n4(S1) = My, andns(S1) = Mo.

10

4.2 Abstract Transformers

We now turn our attention to the more challenging aspect obahgposition: computing
sound abstract transformers.

The semantics of a program statement is given by a funetionX — P(X).
We make the standard assumption that the transformer istawinan the information
order, i.e., ifo; C o5 then7(o1) C 7(02). We extend this function pointwise to :
P(X) — P(X), by definingr(S) = U{r(c) | ¢ € S}. (Note that the extended
transformer is monotone in the information order as welb) purposes of abstract
interpretation, we need to define a corresponding soundeabstansformer oﬂP(E)k.
Given an input valud = (I, ..., 1), the abstract transformer needs to compute the
output valueO = (Oy, ... ,O).

A straightforward sound transformer is the pointwise tfamser 77 defined as
follows:

(I, D) = (T (), - ik (T (1) (4)

Proposition 41 The pointwise transformef” is sound. That is, for every input value
I=(I,...,I;) wherel € P(X)¥, the following holds:

T(y(1) EA(=P(1)) - (5)

Proof: Note that since< andC are reversedy is a meet (i.e., greatest lower bound)
operator orP(X). Letj be any index in{1,... ,k}.

L®.. oL Tl (6)
> ® is ameet operator

(1) E 1)
> by (6) and (3)

T(v(1)) E (1) (8)
> 7 IS monotone

T(v(I)) E i;(7(15)) 9)
> by (8) and sincej; is extensive

T(v(I)) En(r(11)) ® ... @ (7 (Lx)) (10)
> ® IS ameet operator

T(y(I)) Ev(n(r(11)), - i (T(Ik)) (11)
> by (3) and (10)

T(v(1)) E (P (1)) (12)

> by (4) and (11)
O

Example 2.While the pointwise transformer is simple and efficient, i é@ad to im-
precise results when the transformer has to update a sailtistatdoes not have all the

11

relevant information. Recall the example from Sec. 2, antsitter the substat#/s.
SubstatelM; does not contain information about the local variables bEopthreads.
Therefore, M3 also represents a statg,q in which the local variable$ andx of
threadprodl point to the first cell and to the last cell of the list, respeady. Thus, a
conservative transformer 6f x- >n=t , whenprodl serves as the scheduled thread,
must emit a warning about a possible creation of a cyclicAistexplained in Sec. 2, we
can avoid this imprecision by composing substatewith other substates\{;) to pro-
duce a more precise substate that can be transformed withaihg such worst-case
assumptions. This motivates the following definitions.

A combiner sets a setk C {1,... ,k} identifying a set of subheap domains. We
define thepartial concretization functioryr, which combines the information from the
specified set of subdomaids= {j1,... ,jm}, as follows:

.) = QL =1, 9L, 91, . (13)
reR

One-Level Composition. We define thepartial transformerr; [R, ¢], which computes
the substate corresponding to thiln subdomain using the subdomains identifieddy

by
m[R,i|(I) = 0i(T(vr(I))). (14)

We use the termne-levekransformer to indicate that combining (or composing) info
mation from a set of subdomains (identified Byabove) occurs in one step.

We define aone-level transformer specificatiors to be a tuple(rsy, ... , Tsk)
where eachrs; C {1,... ,k}. We define the transformet[7s] by
m[1s|(I) = (m1[Ts1, 1|(I),... ,71[TSk, k](])). (15)

Theorem 1. For any one-level transformer specification, the transformetr [7s] is
sound. That is, for every input valdes P(X)*: 7(y(I)) C ~y(r[7s](I)).

Theorem 2. Let 7s = (71sy,..., 75;) where eachrs; C {1,...,k} be a one-level
transformer specification. Then, the one-level transformérs] is sound. That is, for
every input valud € P(X)*, the following holds:

T(v(1)) Ey(n[7s]|(1)) - (16)

Two-Level Composition. We now present a generalization of the above definition. As
motivation for this generalization, consider a situatiohnene we want to compute an
output valueO; by combining the input values from a set of subdomaiisor by
combining the input values from a set of subdomaltys(but we are unable to say
which of these combinations to use statically). We could;afrse, combine the input
values from the set of subdomaiis U R, but this could be expensive. Instead, we
can utilize the two combinatiorisdependentlyf each other by using

(73 (7 (vr, (1)) 11 (9 (T (vR, (1))

12

as the desired output value. We call transformers derivéiusrfashion two-level trans-
formers, as the use of the meet operatioronstitutes a second stage of combining
(composing) information.

Let Y be a set of combiner sets. We define gegtial transformerr,[Y,], which
computes the substate corresponding toitttesubdomain using the combiner sets in
Y independently, as follows:

BV = [nlRil0) (17)
ReY
We define awo-level transformer specifications to be a tuple(rsy, ... , Tsk)
where eachrs; C P({1,...,k}). We define the transformes|[s] by
TQ[TS](I) = (TQ[TSl, 1]([)7 . 77'2[T5’k7 k‘}([)) (18)

(Note that the computation of the above transformer invebvpartial concretization for
every R in every Ts;. In practice, differentrs; and 7s; may have common elements,
and it is sufficient for the transformer implementation totte corresponding partial
concretization just once.)

Theorem 3. For any two-level transformer specificatiars, the transformerr[7s] is
sound. That is, for every input valdes P(X)*: 7(y(I)) C ~y(m2[7s](I)).

Theorem 4. Let s = (7sy,..., Ts;) where eachrs; C 2{1*} be a two-level
transformer specification. Then, the two-level transfarmérs] is sound. That is, for
every input valud € P(X)*, the following holds:

T(v(1)) E y(r2[7s](1)) - (19)

5 Empirical Results

We implemented the HeDec system in Java on top of the TVLAesygtL2]. HeDec
allows analysis designers to rapidly prototype differdmpe analysis algorithms by
defining heap decomposition schemes. HeDec, however, ia pahacea — the de-
signer needs to carefully select suitable heap decompositNevertheless, HeDec re-
lieves the designer from the task of developing and impldémegrihe static analysis
algorithms, including the transformers.

Fig. 4 compares the results of our decomposition-basedsinakith a full heap
analysis?

Concurrent Benchmarks. We use the analysis of [1] as the underlying shape analysis.
Both analyses successfully prove linearizability and abseof null dereferences
for the three concurrent programs. For a given number ohtleg, the table shows
the time and the number of states resulting in the analysistbfeads invoking an
arbitrary sequence of operations on a single instance cditaé/zed concurrent data

4 All benchmarks except NBQ were run or2al GHz E6600 Core 2 Duo processor witltGB
of memory running Linux.

13

structure. Stack is the non-blocking stack example of Selic. TLQ is the two-lock
queue implementation described in [16]. NBQ is a non-blogkjueue implementation
from [6]. °

Note that while [1] can analyze at mo8tthreads, our approach, on the other
hand,runs foi 5 threads or more. Furthermore, [1] runs out of memory whetyaima
3 threads manipulating a non-blocking-queue.

Sequential Benchmarks. Both analyses successfully prove absence of null derefer-
ences, absence of memory leaks, and data structure ingifoanhe following sequen-

tial benchmarks6- | i st - pr epend adds elements, non-deterministically, into one of
6 lists; 6- | i st -] oi njoinsé lists into one list; and-t r ee- i nsert inserts nodes,
non-deterministically, into one afbinary search trees.

Full Heap Decomposition
Exampld# of thread$# of state$secs|# of substatdssecs
Stack 2 3,424 3 1,608 7
3 10,6296 71 4,103 13
4 MemOut - 7,728 22 Full Heap Decomposition
20 - 212,0483,421 Example # of statefsecsl# of substatesecs
TLQ 3 8783 12 8,911 30 6-list-prepend 17,49 16 557 5
5 44,285 35 23,589 90| 6-list-join 37,689 40 1,282 6
8 MemOut - 58,796 307 4-tree-insert 43,031 44 5,31 29
15 - 202,5582,122
NBQ 2 39,583 69 20,644 263
3 MemOut - 57,065 694
15 - 2,017,2801 da
@) (b)

Fig. 4. Empirical results for: (a) concurrent benchmarks, and (b) settapldenchmarks

6 Related Work

The framework of Cartesian abstraction via state decortipnsive have presented is
relevant to a number of previous lines of work.

Heterogeneous Abstractionstahav and Ramalingam [25] defined a notion of het-
erogeneous abstractions. There, Cartesian abstractienssad as a way to achieve
decomposition (or separation, in the terminology of thgtgga One contribution of
this paper is to show that that previous analysis is based(simgle form of) Carte-
sian abstraction. On the other hand, in that work, heterigewas used only within
a single structure (to abstract the substructure of intelifferently from its context),
where our framework supports different abstractions fffecént factors of the product,
yielding heterogeneity across different structures.fk@mnore, while [25] relies on the
point-wise transformer, we introduce a generalized faroflyransformers that allow
(de)composition when transformers are applied. This gdization allows specifying
more precise transformers, and gives us dynamic sepai@dgicomposition.

5 This benchmark was run oreas6 GHz Quad Xeon with 6 GB of memory running Windows
XP 64 bit.

14

Region-based Heap Analysdsike [25], [9] also decomposes heap abstractions to in-
dependently analyze different parts of the heap. Thererthlysis/verification problem

is itself decomposed into a set of problem instances, ankdhap abstraction is special-
ized for each instance and consists of one subheap for thefptie heap relevant to
the instance, and a coarser abstraction of the remainirigoptire heap, e.g. a points-
to graph. In contrast, we simultaneously maintain abstrastof different parts of the
heap and also consider the interaction between these ffangs, our decomposition
dynamically changes as components get connected and dected.)

Local Transformers.The importance of modularity for the ability to compute san
formers is well known. For example, the first proof rule foogedure calls, theule of
adaptation was given in [11]. It allows reusing a proof of a procedurdym different
invocations of the procedure.

Local reasoning [18,19] enables reasoning about prograatslter heap-allocated
data by combining claims about disjoints parts of the he&ye. 0se of decomposition
here is intuitively similar to that of separation in [18]. & bhief difference is that here a
decomposition may be used that is finer than the transforiméng underlying domain
are precise for, which we react to by performing compositiothe transformers. The
transformers used in analyses based on separation logiorf3he other hand, when
applied to substates either produce exactly as precisematmon as on full states, or
produce top. Our treatment of decomposition as an absiraatiows more flexibility
in this regard. This flexibility is central to the concurrgranalysis we presented: By
not basing decomposition on disjointness, the analysis do¢ necessarily need to
be thread-modular. In particular, we have the option ofoiedicing predicates which
track important correlations between different threadsal states. Approaches based
on disjointness such as [8] have trouble with such situatiomless auxiliary state is
added to the invariants, which is beyond the ability of thisteng automatic analyses.

Partially Disjunctive Heap AbstractionManevich et al. [15] describe a heap abstrac-
tion based on merging sets of graphs with the same set of nudesne (approximate)
graph. The abstraction in this paper is based on decompagingph into a set of sub-
graphs. The abstraction in [15] is orthogonal to the oneimhper.

Handling Concurrency for an Unbounded Number of Threals[2], we use thread
quantification to analyze programs with an unbounded numitbreads. Thread quan-
tification can be thought of as an unbounded variant of aqaati decomposition strat-
egy, which we use to abstract away correlations between \@cebles of different
threads. In the thread quantification analysis, we repattutbing an additional heap de-
composition abstraction in order to abstract away coiimiatbetween values of some
local variables and global variables effects drastic stptece savings. This made the
analysis feasible in the example of proving linearizapitif a non-blocking queue im-
plementation.

Proving Linearizability of Data StructuresShape analysis of concurrent programs with
unbounded dynamic allocation have been investigated. maky/ss in [24] addresses
an unbounded number of threads by losing distinctions thamat be made based on
thread-independent information. This analysis has bemdrd to verify linearization

15

[1] of programs with a bounded number of threads. Here we lusaelécomposition
abstraction to define an analysis that can be exponentgdteif than that in [1].
Manual linearizability proofs using rely-guarantee haeemgiven in [23], and us-
ing a manual translation to automata followed by an intéragtroof in PVS in [4]. Re-
cently, [22] automatically verifies linearizability fromanual specifications in a com-
bination of rely-guarantee and separation logic, usingptioef technique of [1].

7 Conclusions

We present systematic and generic techniques for scalispaype analyses using heap
decomposition, implemented in the HeDec system. A user &fddecan quickly proto-
type a shape analysis by: (a) defining any heap decompostieibelieves is appropri-
ate for the class of programs and properties of interest(l@r&lpplying for every type
of program statement any (possibly empty) combiner set sheMes supplies the right
balance between efficiency and precision. HeDec then atiicatip generates a sound
analysis.

Acknowledgements.We thank Noam Rinetzky, Greta Yorsh, Byron Cook, and Thomas
Ball for supplying us with helpful comments on early draffsttee paper. We thank
Daphna Amit for explaining and helping us use her lineailitgtanalysis and com-
menting on earlier drafts of this paper.

References

1. D. Amit, N. Rinetzky, T. Reps, M. Sagiv, and E. Yahav. Comparisoder abstraction for
verifying linearizability. INCAV, pages 477-490, 2007.

2. G. Arnold, R. Manevich, M. Sagiv, and R. Shaham. Combining sleaylyses by inter-
secting abstractions. Lecture Notes in Computer Science, pages Ep#&er, January
2006.

3. J. Berdine, C. Calcagno, and P. W. O’'Hearn. Symbolic executionsejplration logic. In
Kwangkeun Yi, editorAPLAS 2005volume 3780 ofLecture Notes in Computer Science
pages 52-68. Springer-Verlag, 2005.

4. R. Colvin, S. Doherty, and L. Groves. Verifying concurrent datacsures by simulation.
Electr. Notes Theor. Comput. Sc37(2):93-110, 2005.

5. S. Doherty, D. L. Detlefs, L. Groves, C. H. Flood, V. LuchangeoA. Martin, M. Moair,
N. Shavit, and Jr. G. L. Steele. DCAS is not a silver bullet for nonblockiggrithm design.
In SPAA pages 216-224, 2004.

6. S. Doherty, L. Groves, V. Luchangco, and M. Moir. Formal veaifion of a practical lock-
free queue algorithm. IRORTE pages 97-114, 2004.

7. H. Eo and K. Yi. A differential fixoint iteration method for static analysiesifications.
Technical Memorandum ROPAS-2004-21, Programming Reseaabloratory, School of
Computer Science & Engineering, Seoul National University, Felpr2ia04.

8. A. Gotsman, J. Berdine, B. Cook, and M. Sagiv. Thread-modiiape analysis. IRLDI,
pages 266-277, 2007.

9. B. Hackett and R. Rugina. Region-based shape analysis with tréadatbns. InPOPL,
pages 310-323, 2005.

10. M. P. Herlihy and J. M. Wing. Linearizability: a correctness condit@mrcbncurrent objects.
TOPLAS 12(3):463-492, 1990.

16

11

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.
23.

24,

25.

A

. C. A. R. Hoare. Procedures and parameters: An axiomatic agprd_ecture Notes in
Mathematics188:102—-116, 1971.

T. Lev-Ami and M. Sagiv. TVLA: A framework for implementing staanalyses. I'8AS
pages 280-301, 2000.

R. Manevich, J. Berdine, B. Cook, G. Ramalingam, and M. S&Jiape analysis by graph
decomposition. IMACAS pages 3-18, 2007.

R. Manevich, T. Lev-Ami, M. Sagiv, G. Ramalingam, and J. BexdiHeap decomposition
for concurrent shape analysis. Technical Report TR-20085358, Tel Aviv University,
January 2008. Available at http://www.cs.tau.as.iimster/TR-2007-11-85453.pdf.

R. Manevich, M. Sagiv, G. Ramalingam, and J. Field. Partially disiggnbeap abstraction.
In SAS pages 265-279, 2004.

M.M. Michael and M.L. Scott. Simple, fast, and practical non-bilegland blocking con-
current queue algorithms. PODC, pages 267275, 1996.

F. Nielson, H. R. Nielson, and Chris Hankifrinciples of Program Analysis Springer,
1999.

P. O’'Hearn, J. Reynolds, and H. Yang. Local reasoning girograms that alter data struc-
tures.Lecture Notes in Computer Scien@d42, 2001.

J. Reynolds. Separation logic: a logic for shared mutable data sesicA002.

M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis vaugd logic. ACM
Transactions on Programming Languages and Systei(8):217-298, 2002.

R. K. Treiber. Systems programming: Coping with parallelism. TieehfRReport RJ 5118,
IBM Almaden Research Center, April 1986.

V. Vafeiadis. Shape-value abstraction for verifying linearizabilitaftg 2008.

V. Vafeiadis, M. Herlihy, T. Hoare, and M. Shapiro. Proving ectness of highly-concurrent
linearisable objects. IRPOPP, pages 129-136, 2006.

E. Yahav. Verifying safety properties of concurrent Java ranmg using 3-valued logic.
ACM SIGPLAN Notices36(3):27-40, March 2001.

E. Yahav and G. Ramalingam. Verifying safety properties usingragpn and heteroge-
neous abstractions. PLDI, pages 25-34, 2004.

Heap Decomposition for Concrete Heaps

In this section, we illustrate decomposition, using the donof concrete states (heaps).
(The analyses discussed in the paper exploit decompobyiapplying them to abstract
heaps produced by Canonical Abstraction [20].)

A.1 Concrete Domain

We first define the set of concrete statBs,using the notion of a two-level store. For
simplicity, we focus on sequential program states, howekiergeneralization to multi-
threaded program states is straightforward. We also céptiimitive values to be point-
ers. Itis straightforward to extend the definitions to alfmimitive values of other types
(such as integers and booleans). As a result, we will useethgststate and heap inter-

ch

angeably and do the same with the terms substate and gubhea
Let Var be a finite set of pointer variables and Feld be a finite set of object

pointer fields. Letocsbe a (potentially infinite) set of heap locations. Lec™ denote
the setocsuU {null}, wherenull is a special value not ilocs

17

Definition A1 (Concrete States) A concrete state is a pair(env, field”) where eng :
Var — Loc" is a partial mapping from variables to locations (oull) and field :
Field x locs — Loc" is a partial mapping that maps a pair consisting of a field name
and a location to a location (or the special valoall).

Note that the set{ includestotal statega stater for which bothenv andfld” are
total functions) as well apartial states(states consisting of partial functions). Partial
states are used to enable heap decomposition as illustratedn the sequel, we use
fld” (u) to stand forfield” (fld, u).

We define a partial ordering on concrete states as follows.

Definition A2 (Substate Ordering) Let o and ¢’ be two concrete states. We say that
o’ is a substate of, written o’ = o, if (i) for every program variabler € Var if
env is defined forz then so is erfrand end (z) = env (x); and (ii) for every field

fld € Field and heap location € locs, if field is defined foru then so is field and
field” (u) = field” (u).

Intuitively, o’ < o means that’ contains less information thanabout the values
of variables and fields but agrees witfon any information it does contain.

Let H+ denote the sekf augmented with a special element We extend the re-
lation < to H+ by definingo < T for everyo € Hr. Note that any two elements,
ando, of H+ have a least upper bound with respecktavhich we denote by ® .
Note thato; ® o5 denotes the result @omposingubstates; ando,. We say that two
susbtatesr; ando, substates arimconsistenif there is no substate’ € H such that
o1 = ¢’ andoy < ¢’. In such a case;; ® o9 Willbe T.

A.2 Subheap Extraction

One of the cornerstones of our heap decomposition abstraistithe notion of aub-
heap extractiorfunction which, given a heap, extracts the part of the heapithof
interest. We illustrate this concept below.

We first present a subheap extraction function that worksbtricting attention to
a set of locations of interest. Assume that we are givéotation selection predicate
¢ :H — (locs— {0,1}). Note thatp is astate-sensitiveredicate: the set of locations
selected depends on the state. This gives us the flexibdiggxtract subheaps from
different states differently.

For a stater, letlocs’ (¢), denote the set of locations for which the predicate holds,

def

i.e., locs’(¢) = {v € Loct | ¢(o)(v) = 1}. The subheap extraction operatiop :
def

H — H is defined asé, (o) = (env, field), whereenV = env N (Var x locs’(¢)),

andfield = field” N (Field x locs” (¢) x locg (¢)). A property of subheap extraction
is that it returns smaller substates, i®&.(c) < o for everys € H.

B Proofs for Sec. 4

Proof (of Th. 2).Let j be any index in{1,... ,k}, and letTs; be the corresponding
combiner set.

18

Le. .okt @ I (20)

reTS;
>>since ® is monotone, ieX CV = X)X C QY
reX reyY
Y(I) E vrs, (1) (21)
> by (20), (13), and (3)
T(v(I)) E 7(yrs,; (1)) (22)
> sincer is monotone
T(y(I)) E 0 (r(vzs, (1)) (23)
> by (22) and since; is extensive
T(y(I)) E mi[7sy, j1(1) (24)
> by (23) and (14)
T(’Y(I))ETl[TSl,l](I)®...®71[TS]C,]€](I) (25)
> since ® is a meet operator
T(y(I)) E(nlrsy, 1), ... , [Tk, k](I)) (26)
> by (3) and (25)
T(y(1)) E v(m[7s](1))
> by (15) and (26)
O
Proof (of Th. 4).Let j be any index in{1,... ,k}, let s; € P({1,---,k}) be the
corresponding set of combiner sets, andfe€ {1,--- , k} be a combiner setims;.
T(y(I)) E 7[R, j](1) (27)
by (24) inTh. 2
() [] niRJ0) (28)
RETS;
by (27) and the properties df
T(v(1)) C mal1s;, 4](I) (29)
by (28) and (17)
T(v(I)) E mo[15k, k](I) ® ... @ To[TSk, K] (I) (30)
by (29) and sincew is a meet operator
T(y(I)) E(7e[rs1, 1), ... ,m2[Tsk, K](I)) (31)
by (31) and (3)
T(v(1)) E y(r2[7s](1))
by (18) and (31)
O

19

C HeDec System Optimizations

In this section we explain some of the important implemeotatietails of the HeDec
system.

HeDec implements standard fixed point iteration techniguiesre the abstract ele-
ments are tuples of sets of substates, one set per locatemtige predicate.

C.1 Incremental Transformers

We optimize the fixed point iteration by reusing the resultsrf previous iterations.
Without composition, the transformers are distributive #rus they are trivially incre-
mental. The challenge is handling changes to sets fromréiffeauples when they are
combined. Combining sets is definedds ® Xo = {01 ® 02 | 01 € X1,02 € X2}
whereo; ® o9 is an operation that combines individual substates.

For two sets of substates andY’, let AX and AY be new substates for each set,
respectively. Now, we would like to computé(X U AX) ® (Y U AY)) by reusing
7(X ®Y). We use a known technique in computing differential fixpdietations (see,
e.g., [7]), and use the transformer

T(XUAX)@ (Y UAY))=7(XY)U
(X ® AY)U
(Y @ AX)U
T(AX ® AY)

where the first joined element is taken from the previousiten.

The use of incremental transformer is very important focefficy. For example, on
the non-blocking stack of Sec. 2.1, the incremental transos improve the running
times of5 threads fron206 seconds t86 seconds and dfo threads fron2612 seconds
to 211 seconds. More thatD-fold improvement that increases as the complexity of the
problem and the number of threads increase.

C.2 Optimized Composition for Sets of Substates

One of the costly operations in our framework is the comliamatperator on set¥ Y’
(which is implemented using the algorithm from [2]). The rhenof substates that need
to be combined grows exponentially with the number of setsur benchmarks, we
usually compose at mo8tsets but this is still very costly, in practice.

However, many of the pairs of substates that are combinade@oasistent, and thus
do not contribute substates in the output. We therefore us@ng techniques to avoid
combining many inconsistent substates unnecessarily.

For a stater € X, we say thasignature, (o) is a signature of in X, if for every
o’ € X, we have the property thatsfgnature, (o) # signature, (¢’) theno ando’ are
inconsistent. We use signatures based on unary predicatesnbine sets of substates
by:

X ®Y = {01 ® o2 | signature,,y-(o1) = signaturey,y (o2)} .

We have observed, in our experiments, that using the optiniombination for sets
reduces the amount of useless combinations operations toyaifactor of 100.

20

C.3 Case Study: Proving Linearizability for a Two-Lock Queue

#define EMPTY -1
typedef struct queuet {

]

]
[3] struct el enent _t *Head; _
141 struct element_t *Tail; 1 @re Queue->Head! =NULL &&
(5] lock_t ype HLock: I/ Queue->Tai | | =NULL
6] | ock type TLockz [17] data_type dequeue(Queue *Q {
N} Queu;:r ’ [18] | ock(&Q >HLock) ;
(7 ! [19] Node *h = Q >Head;
/I @re Queue->Head! =NULL && [20] .’\‘?deS*E_ZNB'LE”?
/1 Queue- >Tai | | =NULL 2 : ufﬂ k(&0 >)HL0ck).
(8] void enqueue(Queue *Q data-type v){ (22 ENPTY: ’
[9] Node *x = al | oc(sizeof (Node)); (23] return '
[10] x->d = v; ' [24] datatype r = s->d;

. . [25] Q >Head = s;
| ock(&Q >TLock

Hg NofjeQ*t - Q)>1rai | [26] unl ock(&3 >HLock) ;
(13] t-sn = x: ! [27] return r;
[14] Q>Tail = x; (2e }

[15] unl ock(&Q >TLock) ;

Fig. 5. Two-lock queue implementation

A running exampleFig. 5 shows the two-lock queue implementation describgtiéh
The queue has Head and Tail pointers, each protected withwitslock. Note that
although the implementation uses locks, the algorithmnadlbenign data-races in case
the queue is empty, i.e., the Head and Tail pointers areealias

Concrete ExecutionFig. 6 shows one example of a store occurring in the two-lock

queue implementation shown in Fig. 5. The figure shows twseorer threads and

two producer threads. The elements of the heap alreadyl@@uewith the sequential

execution are marked wittorr. Locks are depicted by arrows to the locking thread.
prodl andcons2are waiting in the corresponding lock acquire point, wajtfor

the lock.cons1finished dequeuing an element from the queue and is aboulet@see

the lock. Finally,prod2 has already added an element to the tail of the queue, but has

not yet updated the Tail pointer. The source of exponentiglosion in the state space

exploration of the two-lock queue algorithm is the corrielatbetween the program

locations of the different threads as in the coarse-graboadurrency.

The Decomposition Schenwge refine the decomposition scheme of Sec. 2.1 by adding
a subdomain to represent the locks. The subheap contairgbjbets pointed-to by
global variables and for each lock, the thread object aoguit. Fig. 7 shows the the
effect of applying this decomposition to the full state ig Fé.

The important thing to notice is that all the exponentiallegjon in the state space
that existed in the full heap is eliminated by this decomipmsi The possible subheaps
of each thread become independent of the number of threatie isystem (for more
than2 threads). The subheaps of the locks subdomgil }) only contain the thread
information of2 threads at most at a time.

21

consl prodl

R60mm Head HLock

Fig. 6. A concrete memory in the two-lock queue implementation shown in Fig. 5

consl cons2 Locks

cons!

Tail

-~
cons2

Head Head

Ty Ty Ts
prodl prod2 corr

TLock Tail

Head HLock

Tail

Head Head HLock

T4 T5

Fig. 7. The decomposed states abstracting the full state in Fig. 6. The namessabtgemains
appear above each substate

22

TransformersThe compositions described in Sec. 2.1 work here as welhdratided
operations of acquiring and releasing a lock, the subdomidine currently executing
thread is combined with the locks subdomain and each of ther domponents.

23

