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Abstract

Program logics are formal systems for specifying and reasoning about
software programs. Most program logics make the strong assumption
that all threads agree on the value of shared memory at all times. This
assumption can be unsound though for programs with races, like many
concurrent data structures. Verification of these difficult programs must
take into account the weaker models of memory provided by the architec-
tures on which they execute. In this paper, we describe progress toward
a program logic for local reasoning about racy concurrent programs exe-
cuting on a weak, x86-like memory model.

1 Introduction

Most concurrent software verification techniques rely on a surprisingly strong as-
sumption: namely, that all processes agree on the value of shared memory at all
times. This is, of course, not generally true, but it is often a safe assumption be-
cause of implicit guarantees provided by modern computer architectures, which
guarantee that programs without races will not observe such inconsistencies.
The soundness of most concurrent software verification techniques therefore re-
lies on race-freedom of the program under study. This is not considered a major
shortcoming though because races usually indicate a program error.

There are, however, useful and interesting programs for which races do not
indicate an error. For example, many concurrent data structures, which opti-
mize for speed and throughput by using locks and fence instructions sparingly,
are often racy by design. Their correctness is demonstrated by relating the
executions of their relatively daring implementations to those of their simpler,
sequential counterparts. Constructing such a relation therefore requires a tech-
nique that is tolerant of races. But that requirement comes with a significant
consequence: any technique that tolerates races soundly must also admit that
processes may observe inconsistencies in the value of shared memory that result
from the peculiarities of the architecture’s memory model.

The verification literature offers little insight into the problem of verifying
concurrent data structures and other inherently racy programs against realistic
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memory models. This is partly because these models adds serious complica-
tion to an already difficult problem, but also because, until recently, formal
specifications of common architectures’ memory models did not exist publicly.
Fortunately, the latter problem has been alleviated with recent specification
efforts, notably for the x86 memory model [8]. So, for that model, the path
toward a solution to the correctness problem of concurrent data structures and
other important programs now lies essentially unimpeded.

In this paper, we describe work-in-progress toward a solution for the partial-
correctness problem for concurrent shared-memory programs with semantics
based on the x86-TSO multiprocessor memory model. We sketch a new Hoare-
style logic designed for C-like programs with load, store and fence instructions,
pointers and pointer arithmetic, and dynamic memory allocation and disposal.
Crucially, the logic embodies an x86-specific principle of local reasoning, allow-
ing proofs to be constructed compositionally using frame rules, as in separation
logic. (Some familiarity with separation logic and, in particular, concurrent
separation logic is assumed.)

The ideas presented here are informal and incomplete. In particular, parts
of the model are not fully specified, and the logic does not yet have a proof of
soundness. The eventual goal is to be able to use the logic to reason soundly
about the behavior of racy concurrent data structures on x86-like machines, but
this remains future work. The goal of this paper is to share some of our ideas
with a broader audience, with the hope of generating discussion and gathering
feedback.

2 Sequential Reasoning

We begin with a program logic for reasoning about sequential programs, exe-
cuting on single-processor x86-like machines. In Section 3, we extend the logic
to handle the parallel execution of threads on multiple, independent x86-like
processors. This weak-memory logic differs from Hoare logic, separation logic
and other strong-memory program logics in that it is expressive enough to dis-
tinguish between temporarily buffered writes (that result from incomplete store
operations) and those that reside in shared memory. The programming lan-
guage consequently incorporates appropriately modified semantics for load and
store commands, as well as fencing commands.

An earlier version of the sequential fragment of the logic is described in
complete detail, including a soundness proof, in a technical note [12].

2.1 Single-processor States

A program’s state in Hoare’s original program logic is described by a variable
valuation, sometimes also referred to as a store. This structure proved insuffi-
cient for representing and reasoning about dynamically allocated memory and
pointers, and so, with separation logic, was augmented with a heap data struc-
ture, a partial function that associates some memory locations with a runtime
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value. But, in a concurrent system interacting with a relaxed memory model,
threads may not always agree on a unique value for every location in memory.
Consequently, we must again elaborate the structure used to describe program
states.

The x86-TSO memory model [8] is described operationally with write buffers—
per-processor FIFO queues of location-value pairs, which represent pending
writes to shared memory. The semantics of load and store in this model are
adjusted to first consult the processor’s write buffer instead of directly interact-
ing with the memory: a store command enqueues a new write into the buffer; a
load command returns the most recent value in the buffer for the specified loca-
tion, only if none exists does it return the value from memory. Buffered writes
are committed to memory and made visible to other processors in the order in
which they were enqueued, but otherwise nondeterministically. Additionally,
fence commands are used to delay a thread’s progress until all buffered writes
at the executing processor are committed to memory.

To capture this behavior, we augment states to include, along with a shared
store and heap, an array of location-value queues, which model per-processor
write buffers. We begin though with just single-processor system states that
consist of a store, a heap and a single queue:

SPStates = Stores ×Heaps ×Queues.

For a state σ, we write s(σ) for the store component, h(σ) for the heap compo-
nent and q(σ) for the queue component.

To support additional logical and operational features, we will continue to
augment the notion of states throughout the paper. In particular, in Section 3,
we describe the extension to multi-processor system states.

2.2 Predicates

For the sake of developing a Hoare-style logic for program reasoning, we wish to
define predicates as sets of x86-TSO states. But because the x86-TSO memory
model allows buffered writes to be committed nondeterministically we focus
on sets of states that includes all intermediate, partially committed states. For
example, a predicate with a state that describes two buffered writes also include
the state in which the first write has committed, and also the state in which
both writes have committed. Technically, we define a partial order ≤ on states,
called the flushing order, such that σ1 ≤ σ2 iff σ1 is the result of committing to
memory some part of the queue of σ2, and we define predicates as sets of states
that are down-closed w.r.t. this order.

2.3 Assertions

We borrow from separation logic the empty and points-to atomic formulas, emp
and e 7→ e′, which informally denote empty and single-point heaps, respectively,
as well as, in this logic, the empty queue. Below, we write E [[e]] for the function
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that evaluates an expression to a value in the context of some store:

(s, h, q) |= emp ⇐⇒ h = ∅ ∧ q = ε
(s, h, q) |= e 7→ e′ ⇐⇒ h = {(E [[e]]s, E [[e′]]s)} ∧ q = ε

To these we add a new leads-to atomic formula, e ; e′, which denotes the empty
heap and the queue with a single write at location e with value e′:

σ |= e ; e′ ⇐⇒ ∃(s, h, q) . σ ≤ (s, h, q) ∧ h = ∅ ∧ q = [(E [[e]]s, E [[e′]]s)]

Note that the meaning of e ; e′ includes also states in which the buffered write
has committed to memory, yielding the following logical implication:

e 7→ e′ |= e ; e′. (1)

We make use of two separating conjunctions in this logic: the interleaving
conjunction, (P ∗ Q), which describes the disjoint union of heaps and all pos-
sible interleavings of the write buffers; and the sequential conjunction, (P ; Q),
which describes states in which the buffered writes of P precede the buffered
writes of Q. To make this more precise, we first introduce a few auxiliary def-
initions. For a state σ, its set of allocated locations, written alloc(σ), is given
by dom(h(σ)) ∪ dom(q(σ)). States are compatible when their stores match and
their allocated locations are disjoint:

σ1^σ2 ⇐⇒ s(σ1) = s(σ2) ∧ alloc(σ1) ∩ alloc(σ2) = ∅ .

For compatible states σ1 and σ2, we define the following functions:

σ1 ∗ σ2 = {(s, h, q) | s = s(σ1) ∧ h = h(σ1) ] h(σ2) ∧ q ∈ q(σ1)#q(σ2)}

σ1 ; σ2 =

{
(s(σ1), h(σ1), q(σ1) ++ q(σ2)) if h(σ2) = ∅
(s(σ1), flush(h(σ1), q(σ1)) ] h(σ2), q(σ2)) otherwise

where q1 ++ q2 denotes the concatenation of buffers, and flush(h, q) the heap
that results from committing the writes of q in order into heap h. Note that the
first function yields a set of states (each of which corresponds to an interleaving
of the two buffers) and is symmetric, while the second yields a single state and
is asymmetric. We use these semantic functions to define the meaning of the
interleaving and sequential conjunctions:

(s, h, q) |= P ∗ Q ⇐⇒ ∃σ1^σ2 . σ1 |= P ∧ σ2 |= Q ∧ (s, h, q) ∈ σ1 ∗ σ2

(s, h, q) |= P ; Q ⇐⇒ ∃σ1^σ2 . σ1 |= P ∧ σ2 |= Q ∧ (s, h, q) = σ1 ; σ2

Algebraically, both conjunctions have emp as a left and right unit, both are
associative, and the interleaving conjunction is commutative. Additionally, we
have that (P ; Q) |= (P ∗ Q), and postulate (though have not yet proved) an
exchange law, ala Hoare [6]:

(P ∗ Q) ; (R ∗ S) |= (P ; R) ∗ (Q ; S). (2)

Here are a few example assertions and their informal meanings:
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• x 7→ 1 ∗ y 7→ 2 — two distinct locations in the heap;

• x ; 1 ∗ y ; 2 — two writes, possibly buffered, to distinct locations, in
either order;

• x 7→ 1 ; y ; 2 — two writes to distinct locations, the former in the heap,
the latter possibly still buffered;

• x ; 1 ; y ; 2 — two writes to distinct locations, in which the x write
precedes the y write;

• x ; 1 ; y 7→ 2 — two distinct locations, both in the heap.

The final example describes two heap locations and no buffered writes because
the former write comes before the latter write, which has already committed
to the heap. Hence, the former must also have been committed to the heap
because writes commit in order. This leads to the following equivalence:

e ; e′ ; f 7→ f ′ ≡ e 7→ e′ ∗ f 7→ f ′. (3)

Note how the different interpretation in the last two examples corresponds to
the case split in the definition of the ; operation on states.

It would be useful to be able to describe the effect of committing a write to
memory, like e in Eq. 3, without referring to an additional write, like f . We ac-
complish this with another atomic formula bar, which stands for “barrier,” and
which can be used to logically describe the exact relationship between points-to
and leads-to:

e ; e′ ; bar ≡ e 7→ e′. (4)

To give meaning to bar, we augment states with an additional boolean value,
which indicates whether nondeterministic flushing of buffered writes has begun.
We require that the value be T in any state in which the heap is non-empty—
heap values are just committed writes that were once buffered. The meaning of
bar is thus:

(s, h, q, b) |= bar⇐⇒ h = ∅ ∧ q = ε ∧ b = T.

Other semantic definitions are updated accordingly for this augmented no-
tion of state. In particular, the case split in the definition of the semantic
function σ1 ; σ2 is w.r.t. the value of the boolean instead of the emptiness of
the heap; the boolean is set in models of points-to, and unset in models of the
empty formula.

2.4 Asymmetric Counting Permissions

With the assertions given thus far, it is possible to describe successive writes
to distinct locations, but not to the same locations; to do so would violate the
disjointness requirements of the separating conjunctions. For example,

e 7→ e′ ; e ; e′′ ≡ false
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because no models of the first conjunct are compatible with any models of
the second—the allocated location e cannot be separated across the sequential
separating conjunction.

It would, of course, be useful to describe successive writes to a single location;
in particular to state an axiom for the store command. To solve this problem,
we augment states with a notion of sharing. In particular, we associate with
each allocated location an element of an asymmetric counting permission model,
(Z, ;̂ ). The model is inspired by counting permissions of Bornat et al, [1], but
here the operation is partial and asymmetric, and is defined as follows:

a ;̂ b =

{
a+ b if a < 0 ∧ (b < 0 ∨ −b ≤ a)
⊥ otherwise.

The semantic function (σ1 ; σ2) is redefined with a relaxed notion of compat-
ibility: locations allocated in both states must have compatible (i.e., not ⊥)
permissions. For now, the semantic function (σ1 ∗ σ2) is unchanged, requiring
disjointness of allocated locations. Syntactically, points-to and leads-to asser-
tions are annotated with integers (e.g., e ;n e′) that denote their location’s
permission value.

To understand the intuition behind asymmetric counting permissions, first
recall Bornat’s original counting permission model. There, negative integer an-
notations denote read-only permission for the location, and nonnegative integer
annotations indicate the number of read-only permissions that have been split
off. In particular, a zero annotation indicates full permission. For example,

x 7→−1 1 ∗ x 7→−1 1 ∗ x 7→2 1,

is a consistent formula in Bornat’s logic with full permission (-1 + -1 + 2 = 0),
in which two read-only assertions have been split off of the original assertion.

The asymmetric model can be derived from Bornat’s counting model by
replacing the separating conjunction with the sequential conjunction, and re-
quiring that permissions are combined with ;̂ in the order shown in the ex-
ample above, from negative to positive. Then we can interpret a nonnegative
annotation as denoting the most-recently written (top-most) value, where the
particular value indicates the number of prior values, if any. Such prior values
are indicated by negative annotations, and the full permission by zero. For ex-
ample, the following is a consistent formula that describes two successive writes
to location x:

x 7→−1 1 ; x ;1 2,

because −1 ;̂ 1 = 0. The following, on the other hand, are inconsistent:

x 7→−1 1 ; x 7→−1 2 ; x ;1 3 and x 7→0 1 ; x 7→−1 2

because the top-most write, annotated with n ≥ 0, must succeed no more than
n earlier writes (−2 ;̂ 1 = ⊥), and no writes may follow the top write, annotated
with a non-negative integer (0 ;̂ −1 = ⊥).
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In the next section, we leverage the features of this permission model (i.e.,
consecutive writes to a single location, write counting, indication of the top-most
write) to give small axioms and suitably general frame rules for a sequential spec-
ification logic. That is, the role played by this asymmetric counting permissions
model is to enable assertions to locally state constraints which are potentially
global across the entire underlying write buffer.

2.5 Sequential Programs and Specifications

Sequential program specifications are given by Hoare triples:

{P} c {Q},

where P is a precondition assertion for command c and Q is a postcondition
assertion. Triples have the fault-avoiding partial-correctness semantics that is
standard in separation logic: for every state σ |= P , executions of c from σ do
not fault and either diverge or terminate in a state σ′ such that σ′ |= Q.

To derive these triples, the usual inference rules of Hoare logic are available,
including, e.g., the rule of consequence. And, as in separation logic, there
are frame rules1 for the separating conjunctions. First, for the interleaving
conjunction:

{P} c {Q}
{R ∗ P} c {R ∗ Q}

(int-frame)

Intuitively, this captures the fact that a program is not affected by locations out-
side of its footprint, whether values in the heap or writes arbitrarily interleaved
in the write buffer. And second, a frame rule for the sequential conjunction:

{P} c {Q}
{R ; P} c {R ; Q}

(seq-frame)

Note that sequential conjunction is not generally commutative, so this is explic-
itly a left-side frame rule. Intuitively, this additionally captures the fact that a
program is not affected by the presence of additional, previous buffered writes,
whether to locations outside or within its footprint, so long as the precondition
and frame do not make conflicting assumptions about the top-most write or
number of pending writes to individual locations.

We can now give relatively small2 axioms for the atomic commands of the
language. Again, axioms from Hoare logic for non-heap-manipulating com-
mands are completely standard.

1Here, as in separation logic, there must be some mechanism for controlling the occurrence
of modified variables, but we make no attempt to specify these explicitly here.

2The formula-level variables in these axiom schemes can be eliminated for the sake of
achieving truly small axioms at the cost of additional semantic and syntactic complexity
by the addition of a right-hand sequential frame rule. This complicates the store axiom in
particular. Aesthetically, we find these relatively small axioms to be a reasonable tradeoff.
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In an x86-like memory model, the load command fetches the most recent
value written to a location e, whether buffered or in memory, and assigns that
value to variable x. The following axiom schema captures this:

{e ;n e
′ ; P} x := [e] {e ;n e

′ ; P ∧ x = e′}, (load)

where n is any nonnegative integer. Note that formula P may describe, e.g.,
writes to distinct locations more recent than the last write to e. If, on the other
hand, P describes more recent writes to e, the precondition becomes inconsistent
and the specification is vacuously true. Alternately, by instantiating P with
bar, the axiom specifies loading from shared memory instead of from the write
buffer. Using the sequential frame rule, we can conclude that earlier writes are
irrelevant to the execution of the load command. Similarly, with the interleaving
frame rule, we can conclude that writes to other locations, either before or after
the last write to e, are also irrelevant.

A store of value e′ to address e results in a new write added to the top of
the write buffer, assuming the location has already been allocated:

{e ;n v ; P} [e] := e′ {e ;−1 v ; P ; e ;n+1 e
′}. (store)

where n is any nonnegative integer. In the precondition, the leads-to formula
serves as a witness to the location’s allocated status; the sequential frame rule
can be used to describe the previous n values of e. In the postcondition, the top-
most write from the precondition now becomes one of n+1 writes that occurred
prior to the new write, with annotated permission value n + 1. Again, P can
be instantiated to describe writes to distinct locations that occurred between
the previously most recent write to e and the new write, or bar to describe the
situation in which the previous write to e is a heap value.

The fence command commits all pending writes to memory. Its axiom simply
introduces a bar formula:

{emp} fence {bar}. (fence)

Using the fence axiom, the sequential frame rule and the rule of consequence
with Eq. 4, we can prove, for example:

{x 7→−1 1 ; x ;1 2} fence {x 7→0 2}.

Dynamic allocation and disposal are performed by the new and free com-
mands, respectively. The semantics of these commands are not defined at the
level of the memory model, so there is some choice about what operational
meaning to give them. In practice, these commands are typically implemented
using fence commands to ensure system-wide consistency. In contrast, we have
chosen to extricate barriers from their meaning, primarily to explore the cir-
cumstances in which barriers are actually needed. (The typical semantics of
allocation and disposal can be recovered by explicitly adding fence instructions
before and after these commands.)
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Absent a succeeding barrier, allocation is perfectly natural; it simply adds a
new write to an unallocated location to the top of the write buffer:

{emp} x := new(e) {x ;0 e} (new)

Note that the write in the postcondition has full permission, which forces earlier
writes, framed from the left, to have distinct locations. Otherwise, this could
result in a duplicate allocation.

The meaning of the free command absent a preceding barrier is less clear.
Our semantics is conservative: if a location has at most one value in the system,
it may be deallocated. In particular, we make no attempt to describe the out-
come of deallocation without a barrier when there are multiple pending writes.
Perhaps in this case the command should fault, or perhaps all pending writes
should be removed from the system, leaving writes to other locations unaffected.
In any case, the following axiom3 describes the conservative semantics and does
not allow anything to be proved in the less clear cases:

{e ;0 −} free(e) {emp} (free)

Symmetric to the case for allocation, the write in the precondition has full
permission, which in this case prevents earlier writes to the same location from
being framed on from the left, yielding a double disposal. By using the rule of
consequence with Eq. 1, the precondition may be strengthened from a leads-to
assertion to a points-to assertion, thus axiomatizing disposal of shared memory.

3 Concurrent Reasoning

In this section, we sketch an approach to concurrent, multi-processor program
reasoning w.r.t. an x86-like memory model in the style of concurrent separation
logic, where shared regions of memory are described by resource invariants [7].

3.1 Multi-processor States

We begin by generalizing the structures used to represent states for multi-
processor systems. Single-processor states were represented by a tuple consisting
of a store, a heap (with permissions), a queue, and an additional boolean value
indicating whether buffered writes have been committed to memory. For multi-
processor states, we replace the single queue with an array of queues—one for
each processor—modeled as a function in (Procs → Queues), where Procs ⊆ N
is a fixed set of processor identifiers. Commands are associated with a proces-
sor identifier p ∈ Procs so that, for example, a store command on processor p
adds a new write to the pth write buffer. A single store (variable valuation) is
sufficient as we assume that no variable is modified in more than one process.
A single boolean value for committed writes is sufficient because we update the

3We take e ;n − as shorthand for ∃v . e ;n v, for some v /∈ fv(e).
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compatibility relation for sequential composition to require that at most one
queue be non-empty—this is elaborated upon in the next section.

3.2 Assertions

Syntactically, assertions are largely the same as for the sequential logic. Because
states now have multiple write buffers, we must annotate the leads-to assertion
with an additional expression indicating the buffer in which it resides, e.g., e ;p

n

e′. We update the function (σ1 ∗ σ2) to describe the pointwise interleavings of
the states’ write buffers. And, as mentioned earlier, we restrict the compatibility
relation for (σ1 ; σ2) so that there exists at most one p ∈ Procs such that the pth
buffer is nonempty in both σ1 and σ2. This prevents us from writing (consistent)
assertions like e ;p

n e′ ; f ;q
m f ′, which do not seem particularly useful. On

the other hand, this allows for the simplicity of using a single boolean value for
representing the presence of committed writes, and hence also an unannotated
bar formula with the following useful equivalence:

e ;p
n e
′ ; bar ≡ e ;q

n e
′ ; bar. (5)

Equation 5 justifies the following equivalence, an update of Eq. 4, which intu-
itively means that it does not matter from which processor’s write buffer a heap
value originated:

e 7→n e
′ ≡ e ;p

n e
′ ; bar. (6)

3.3 Concurrent Programs and Specifications

We assume commands c are annotated with the processor identifier on which
they execute, e.g., cp for a sequential command executing on processor p, or
cp0 || c

q
1 for a parallel composition of c0 and c1 executing on processors p and

q respectively. When specifying a sequential command, we sometimes also
parametrize the turnstile with a processor identifier, taken as short-hand for
the uniform annotation of leads-to assertions with that identifier, as well as the
command. And, when there are no leads-to assertions or if the command and as-
sertions reference only a single processor, we may omit the processor identifiers
altogether.

Concurrent program specifications are given by Hoare triples parametrized
by a shared resource assertion, which is an invariant for the heap part of shared
state:

R ` {P} c {Q}.

The meaning of a concurrent specification is roughly as in concurrent separation
logic [3]: assuming the parallel environment respects the invariant R, for every
state σ |= R ∗ P , executions of c from σ do not fault, respect the invariant R,
and either diverge or terminate in a state σ′ such that σ′ |= R ∗ Q.
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The concurrent logic inherits all of the rules from the sequential logic4 by
uniformly annotating them with a processor identifier and a shared resource
assertion. For example, using the aforementioned short-hand, the store axiom
schema becomes:

R ` {e ;n v ; P} [e] := e′ {e ;−1 v ; P ; e ;n+1 e
′} (store)

We require commands c that access shared memory locations to be explic-
itly annotated 〈c〉 to indicate their atomicity assumptions. Of course, we do
not suppose that the underlying x86-like machine supports atomic execution
of arbitrary commands. But this allows uniform reasoning about those atomic
commands that are supported by the machine, such as atomic increment or
compare-and-swap, which can be defined as atomic sequential commands con-
sisting of load, store and barrier commands. For example, atomic increment is
defined as 〈y := [x] ; [x] := y + 1 ; fence〉.

The atomicity requirement also does not rule out race conditions. For ex-
ample, in the parallel composition 〈[x] := 1〉 ||〈y := [x]〉, the execution of the two
atomic commands can be assumed not to overlap, but a race on x still exists be-
cause the write is buffered and may commit sometime after the store command
terminates.

A program satisfies a concurrent specification only if its executions respect
the shared resource invariant, which is a heap-only assertion. Atomic com-
mands may assume that the shared state respects the invariant upon entering
the atomic section, and must ensure that their terminating state respects the
invariant on exit. But terminating states may contain buffered writes, which
cannot possibly satisfy a heap-only assertion. This should be considered safe,
though, as long as the writes never leave the heap in a state that violates the
shared resource invariant as they commit.

Technically, we describe this property as follows. For state σ, we write σ\ε
for the state that results from replacing each buffer in σ with the empty buffer.
Let R be a heap-only assertion. We define the expansion of R, written R, as
follows:

σ |= R⇐⇒ ∀σ′ . σ′ ≤ σ ⇒ σ′\ε |= R.

This yields, for example,5 the following logical implication:

x 7→−1 1 ; x ;
p
1 2 |= x 7→0 {1, 2}.

Hence, the expansion R describes all states with buffered writes that, when
committed to memory, respect the invariant R. With this syntax, the rule for
accessing shared state is as follows:

emp ` {R ∗ P} c {R ∗ Q}
R ` {P} 〈c〉 {Q}

(atomic)

4The possible exception being the rule of conjunction. Its soundness likely depends on a
suitable notion of precision that is not yet well understood in the context the weak logic [5].

5In the sequel, we write P [S/x] as shorthand for ∃x ∈ S . P (x).
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The parallel composition rule is directly from concurrent separation logic:

R ` {P} c {Q} R ` {P ′} c′ {Q′}
R ` {P ∗ P ′} c || c′ {Q ∗ Q′}

(par)

And, finally, the sharing rule allows us to move shared resource assertions to
the local specification:

R ` {P} c {Q}
emp ` {R ∗ P} c {R ∗ Q}

(share)

In the conclusion, there may still be pending writes into the resource defined
by R, and so the most we may conclude is that these pending writes satisfy the
relation R.

With these rules, in contrast to CSL, we can prove racy programs. For
example:

emp ` {x 7→0 {1, 2}} 〈[x] := 1〉 ||〈y := [x]〉 {y = 1 ∨ y = 2}.

3.3.1 A Stubborn Example

Consider the following message-passing parallel program cw || cr, where cw and
cr are defined as follows:

cw = 〈[data] := 1〉 ;〈[ready ] := 1〉 and cr = 〈x := [ready ]〉 ;〈y := [data]〉.

We would like to prove, under some precondition, the following specification:

emp ` {...} cw || cr {x = 1⇒ y = 1}.

We proceed by defining a resource invariant6 R for the shared locations:

R = ∃d .∃r . data 7→ d ∗ ready 7→ r ∧ (r = 1⇒ d = 1),

and then use sequential reasoning and the rule for atomic sections to show that
each component individually respects the invariant. We could then complete
the proof as follows:

...
R ` {emp} cw {emp}

...
R ` {emp} cr {emp ∗ (x = 1⇒ y = 1)}

R ` {emp} cw || cr {emp ∗ (x = 1⇒ y = 1)}
emp ` {R} cw || cr {R ∗ (x = 1⇒ y = 1)}

emp ` {R} cw || cr {x = 1⇒ y = 1}
(cons)

(share)
(par)

6Counting permission annotations in resource invariants, implicitly 0, are omitted for read-
ability.
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Unfortunately, we are unable to show that the writing thread cw satisfies
its part of the specification, i.e., that R ` {emp} cw {emp}. The first write
is not problematic, for we can readily show that setting data will never violate
the invariant. The second write, on the other hand, is problematic. We need to
show in particular that:

R ; ready ;1 1 |= R,

but this is impossible because the implication is false. Consider that if both data
and ready are unset—which is possible, according to the invariant—then setting
ready violates the invariant.

In traditional (strong-memory) concurrent separation logic, we could solve
this problem with an auxiliary variable: modify the program to atomically assign
to aux as it stores to data, and strengthen the invariant to require that aux =
1 ⇒ data 7→ 1. The second write can then be proved with the precondition
aux = 1 as part of its local state. But this is insufficient in the weak logic,
because we have no way of knowing when the write to data will commit, so it
is not necessarily the case that aux = 1⇒ data 7→ 1.

What we do know is that by the time the second write, to ready, commits
the write to data must have committed because writes always commit in order.
Unfortunately this relationship is lost in the logic as described thus far; the
relative order of writes to shared memory is abstracted away when exiting an
atomic section, summarized by the invariant only as a set of possible heap values.

On the other hand, if the writing thread could instead keep ownership of the
shared locations in its local state, then it could precisely track the relative order
of writes; as per the rule for atomic sections, no summarization is needed for the
local post-state. But then these locations would have to be removed from the
resource invariant, and hence from the shared state, and so the reading thread
would be unable to access them without additional synchronization, which would
defeat the purpose of the weak logic entirely.

3.4 Splitting Permissions

This suggests a solution based, yet again, on permission accounting ala Bornat
et al, this time with a splitting algebra [1]. In fact, we use a fractional model
(Q, ∗̂ ), as initially suggested by Boyland, for sharing read-only resources among
threads [2] across the interleaving separating conjunction. For s1, s2 ∈ Q:

s1 ∗̂ s2 =

{
s1 + s2 if s1 > 0/1 and s2 > 0/1 and s1 + s2 ≤ 1/1

> otherwise.

The compatibility function for (σ1 ∗ σ2) is modified to require that locations
allocated in both heaps have equal values, compatible fractional permissions
and that both have full counting permission. The compatibility function for
(σ1 ; σ2) is strengthened to require that locations allocated in both states have
equal fractional permissions. The ∗ operation on states is constant in the count-
ing permissions, and the ; operation is constant on the fractional permissions.
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The points-to and leads-to assertions are now annotated with a pair (s, n),
where s is a splitting permission and n is a counting permission.7 The store
axiom is updated to require full splitting permission (i.e., (1/1, n), with n ≥ 0),
while for the load axiom, any splitting permission suffices (i.e., (s, n), with
0/1 < s ≤ 1/1 and n ≥ 0). The allocation and disposal axioms guarantee
resp. require full splitting permission.

This model results in the following basic heap equivalences:

s = s1 ∗̂ s2 ⇒ (e 7→s1,0 e
′ ∗ e 7→s2,0 e

′ ≡ e 7→s,0 e
′) (7)

n = n1 ;̂ n2 ⇒ (e 7→s,n1 e
′ ; e 7→s,n2 e

′ ≡ e 7→s,n e
′) (8)

Additionally, the following equivalence indicates the usefulness of the combined
model for our purposes:

x 7→1/1,−1 1 ; x ;1/1,1 2 ≡ (x 7→1/2,0 {1, 2}) ∗ (x 7→1/2,−1 1 ; x ;1/2,1 2) (9)

Intuitively, this means an assertion with full permission can be split into two
half-permission parts, one of which captures just the possible heap values, and
one of which captures the ordered writes. This is exactly the sort of sharing
needed to complete the message-passing proof: a thread may remember its own
writes to a location provided the parallel context only reads from the location.

3.4.1 A Stubborn Example, Revisited

With our combined model, we now return to the message-passing program.
First, let us denote by Rx the assertion like R, but in which each points-to
assertion has permission x:

Rx = ∃d .∃r . data 7→x d ∗ ready 7→x r ∧ (r = 1⇒ d = 1).

Now, taking the resource invariant to be R1/2, we can prove for the reading
thread cr that x = 1 ⇒ y = 1 as before, and sketch the following proof for the
writing thread cw under precondition P , defined below:

{P : data 7→1/2,0 − ∗ ready 7→1/2,0 −}
〈[data] := 1〉;

{(data 7→1/2,−1 − ∗ ready 7→1/2,0 −) ; data ;1/2,1 1}
〈[ready ] := 1〉

{(data 7→1/2,−1 − ∗ ready 7→1/2,−1 −) ; data ;1/2,1 1 ; ready ;1/2,1 1}
{true}

The proof of each triple relies crucially on an equivalence similar to Eq. 9, which
allows us to combine the half-permission heap values described by the resource

7A simple product suffices to combine splitting and counting models in this setting, in
contrast to the necessarily more elaborate models of Parkinson [9] and Dockins, et al [4],
because each splitting aspect is effectively isolated to a single conjunction: counting to the
sequential conjunction, and splitting to the interleaving conjunction.
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invariant, R1/2, with the half-permission heap values and writes from the local
state, P , into the full, writable permission: R1/2 ∗ P ≡ R1.

...
R1/2 ` {P} cw {true}

...
R1/2 ` {emp} cr {x = 1⇒ y = 1}

R1/2 ` {P} cw || cr {x = 1⇒ y = 1}
emp ` {R1/2 ∗ P} cw || cr {R1/2 ∗ (x = 1⇒ y = 1)}

emp ` {R1} cw || cr {x = 1⇒ y = 1}
(cons)

(share)

(par)

4 Related Work and Conclusion

The only other logic we know for reasoning soundly about racy concurrent pro-
grams (without unrealistic strong memory assumptions) is from Ridge, who has
encoded a rely-guarantee-style system for x86 assembly programs into [10]. He
has given a formal soundness proof w.r.t. the x86-TSO memory model, and
used the logic to construct proofs of several interesting concurrent data struc-
tures. In contrast to the small axioms and frame rules in our work, his logic
does not incorporate any particular mechanism for local reasoning. Much work
remains on the weak logic sketched in this paper. A significant shortcoming of
the combined permission model is that some assertions do not denote down-
closed sets of states, which can lead to violations of soundness. Although we
believe it to be relatively straightforward to avoid such assertions, a conserva-
tive method of checking this property is needed. (This is similar to stability
requirements in, e.g., RG-Sep [11].) Additionally, some of the logical implica-
tions from Section 2.3, like the exchange law, fail to hold for assertions with
partial permissions. Further investigation of the soundness of the logic is an
immediate priority, as well as finding a useful, partial axiomatization of the as-
sertion language. Finally, we hope to be able to apply the logic to some racy
concurrent data structures.
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