
Precision and the Conjunction Rule

in Concurrent Separation Logic

Alexey Gotsmana Josh Berdineb Byron Cookb,c

a IMDEA Software Institute
b Microsoft Research

c Queen Mary University of London

Abstract

Concurrent separation logic is a Hoare logic for modular reasoning about concurrent heap-
manipulating programs synchronising via locks. It achieves modular reasoning by partitioning
the program state into thread-local and lock-protected parts, and assigning resource invariants to
the latter. Surprisingly, the logic is unsound unless resource invariants are precise, i.e., unambigu-
ously carve out an area of the heap. The counterexample showing the unsoundness involves the
conjunction rule. However, to date it has been an open question whether concurrent separation
logic without the conjunction rule is sound when the restriction on resource invariants is dropped:
all the published proofs have the precision restriction baked in. In this paper we present a single
proof that shows the soundness of the logic with imprecise resource invariants, but without the
conjunction rule, as well as its classical version, where resource invariants are required to be precise
and the conjunction rule is included. Our proof yields a precise and direct formulation of O’Hearn’s
Separation Property and provides a semantic analysis of the logic that is much more elementary
than previous proofs.

Keywords: Separation logic, concurrency, precision, conjunction rule.

1 Introduction

Concurrent separation logic [12] is a Hoare logic for modular reasoning about
concurrent heap-manipulating programs synchronising via locks, aka mutexes.
It achieves modular reasoning by imposing a partitioning of the variables and
the heap forming the program state into several disjoint parts: thread-local
parts (one for each thread, aka process) and protected parts (one for each
free lock, i.e., a lock that is not held by any thread). A thread-local part
may only be accessed by the corresponding thread, and a lock-protected part
only when a thread holds the lock. When such a partitioning exists, the
program is said to satisfy the Separation Property. To specify the partitioning,

c©2011 Published by Elsevier Science B. V.

Gotsman, Berdine, Cook

the logic associates each lock in the program with an assertion—its resource
invariant—that describes the part of the state it protects. For example, a
resource invariant might state that a lock protects a singly-linked list with the
head node pointed to by a particular variable. For any given thread, resource
invariants restrict how the other threads can change the protected state, and
hence, allow reasoning about the thread in isolation.

It is important to note that the state partitioning described above is not
a part of the program itself, but is enforced by proofs in the logic to enable
modular reasoning in the presence of concurrent interference. Moreover, the
partitioning is not required to be static, i.e., the logic permits ownership trans-
fer of variables and heap cells between areas owned by different threads and
locks. Such a non-standard view of the program state makes the formulation
and proof of soundness of the logic difficult. In fact, the logic was proposed
by O’Hearn in 2001, but the first proof of soundness (due to Brookes) was
given only in 2004 [2]. This is because, as Reynolds showed shortly after the
logic was invented [12], it is unsound unless resource invariants are precise.
Informally, a predicate over program states is precise when it unambiguously
carves out an area of the heap (see Section 2.1 for a formal definition). For
example, the separation logic assertion x 7→ 0, denoting a cell at the address
x storing 0, is precise; however, the assertion x 7→ 0∨ emp, denoting either the
cell or the empty heap, is not. The key proof rule used in the counterexample
showing the unsoundness is the conjunction rule:

` {P1} C {Q1} ` {P2} C {Q2}
` {P1 ∧ P2} C {Q1 ∧Q2}

The rule is useful for combining the results of two proofs; e.g., it is used by
the reduced product construction in abstract interpretation [6].

O’Hearn has conjectured that the logic might be sound in the case when
both the restriction of precision and the conjunction rule are dropped [12]. The
question of this conjecture’s validity is not only of theoretical importance: we
do want to use imprecise resource invariants in practice. For example, consider
the following two definitions of a list-segment predicate [15] we could use in a
resource invariant:

ls1(E,F) ⇔ (E = F ∧ emp) ∨ (∃X.E 7→X ∗ ls1(X,F) ∧ E 6= F);

ls2(E,F) ⇔ (E = F ∧ emp) ∨ (∃X.E 7→X ∗ ls2(X,F)),

where X is chosen fresh. The latter definition yields imprecise assertions:
e.g., both the heaps described by X 7→Y and ∃Z.X 7→Y ∗ Y 7→Z ∗ Z 7→Y sat-
isfy ls2(X, Y); only the former assertion implies ls1(X, Y). However, the ls2

predicate validates some entailments between assertions that ls1 does not. For

2

Gotsman, Berdine, Cook

this reason, it is the ls2 predicate that modern program analysis tools based
on separation logic use (e.g., [16]). As automatic tools based on concurrent
separation logic are usually built on top of corresponding sequential analyses,
these tools thus often infer imprecise resource invariants [3,9].

To date, it has been an open question whether O’Hearn’s conjecture is
true: the whole of Brookes’s proof of soundness [2] and all alternative proofs
published after it [4,11] depend on the precision of resource invariants and
thus have the conjunction rule baked in. The automatic program analyses
producing imprecise invariants have either been proved sound directly with
respect to program semantics [9], or relied on the conjecture being true [3].
In this paper we present a single proof that shows the soundness of the logic
with imprecise resource invariants, but without the conjunction rule, as well
as its classical version, where resource invariants are required to be precise
and the conjunction rule is included (Theorem 4.1). In addition to showing
the soundness of concurrent separation logic, our proof provides a semantic
analysis that is much more elementary than the previously proposed ones,
which have been based on action traces [2,4] or Petri nets [11].

We achieve this using the concept of a semantic proof that annotates pro-
gram points in the code of a thread with descriptions of its local state (Sec-
tion 4.1). Unlike the standard interpretations of Hoare triples, the interpre-
tation in terms of semantic proofs is quite intentional. The definition of a
triple being valid does not abstract away all the internal syntactic structure of
the command or proof, while the standard interpretations are given solely in
terms of the extensional meaning of the command and pre- and post-condition
assertions. This use of an intentional definition is an acknowledgement that
the intuitive reason for the unsoundness of the conjunction rule with imprecise
resource invariants is crucially about proofs, not denotations of commands. In
particular, imprecise resource invariants allow the two premisses of the con-
junction rule to make conflicting choices about how to partition the state. It
is these different choices of state partitioning in different branches of the proof
that lead to problems, but the partitioning in question is irrelevant to the
operational behaviour of the command.

One view of previous soundness proofs is that in lieu of using an intentional
interpretation of triples, they instrument the semantics of commands with
manipulation of the partitioning in order to expose enough of the intentional
detail even with an extensional interpretation. A key consequence of using
semantic proofs instead of an instrumented semantics is that the Separation
Property can be formulated (Lemma 4.2) directly as an invariant of concur-
rent executions: for a given point in the program the local states of threads
can be determined from their semantic proofs. Consequently, no tracking of
changing instrumentation along execution traces is needed, and the previously
crucial and difficult step of decomposing a concurrent execution into an inter-

3

Gotsman, Berdine, Cook

leaving of constituent sequential executions (Brookes’s Parallel Decomposition
Lemma [2]) can be avoided.

Technically, to prove the soundness of concurrent separation logic, we de-
fine a thread-local interpretation of every thread in the program as a semantic
proof. A formalisation of the Separation Property (Lemma 4.2) connects the
thread-local interpretation to a standard interleaving operational semantics
(Section 3). We then define the notion of validity of Hoare triples for com-
mands with respect to this interpretation and prove the soundness of all the
proof rules (Section 4.2). Despite not tracking a partitioning of the state, the
thread-local interpretation is strong enough to establish that provability of a
program in concurrent separation logic implies that the program is data-race
free (Section 5).

2 Concurrent separation logic

In this paper we consider the version of concurrent separation logic proposed
by Calcagno et al. [4]. This version of the logic is abstract in the sense that it
can be interpreted over a wide class of semantic models with a given structure,
which allows reusing results about the logic in multiple contexts. As any
Hoare logic, concurrent separation logic includes two formal systems—one for
assertions and one for specifications. We discuss the former first.

2.1 Assertions

In abstract separation logic, assertions are interpreted with respect to a sep-
aration algebra, which represents program states.

Definition 2.1 (Separation algebra) A separation algebra is a partial
commutative monoid (Σ, ∗, ε) with a unit element ε ∈ Σ. A partial commu-
tative monoid is given by a partial binary operation of separate combination
∗, where the unity, commutativity and associativity laws hold for the equality
that means both sides are defined and equal, or both are undefined.

The original definition of separation algebras given in [4] requires the ∗ opera-
tion to be cancellative: for each σ ∈ Σ, the partial function σ ∗ · : Σ ⇀ Σ must
be injective. This requirement is connected with conditions for validating the
conjunction rule of Hoare logic. We have omitted it here since we also consider
models of concurrent separation logic invalidating the rule.

In this paper, by a domain D we understand a lattice (D,v,t,u,>,⊥).
For a set Σ let P(Σ)> be the domain of subsets of Σ with a special element >.
The order v in the domain P(Σ)> is subset inclusion with > being the greatest
element and ∅ the least. When Σ represents program states, we usually use >
to denote an error state, e.g., resulting from dereferencing an invalid pointer.
Note that the order v defines the corresponding join t and meet u operations

4

Gotsman, Berdine, Cook

on the domain P(Σ)>. If Σ is a separation algebra, we can lift the ∗ operation
to P(Σ)> pointwise: for all p, q ∈ P(Σ)

p ∗ q =
⋃
{σ ∗ η | σ ∈ p, η ∈ q, σ ∗ η is defined}; > ∗ p = p ∗ > = >.

Thus, P(Σ)> has a total commutative monoid structure with the unit e = {ε}.
For a separation algebra Σ, we call P(Σ)> the separation domain constructed
from the algebra Σ.

We denote with~ the iterated version of ∗ on P(Σ)>:
n
~
k=1

pk = e∗p1∗. . .∗pn.

For σ ∈ Σ ∪ {>} we denote with {|σ}| the singleton set {σ}, if σ ∈ Σ, and >,
if σ = >. Thus, {|σ}| ∈ P(Σ)>.

A predicate p ∈ P(Σ) over a separation algebra Σ is precise [12,13] if for
any state σ there exists at most one substate σ1 satisfying p: σ = σ1 ∗ σ2 for
some σ2. If such a substate exists and the ∗ operation is cancellative, then the
substate σ2 is unique.

Elements of separation algebras and domains are often defined using partial
functions. We use the following notation: f(x)↑ means that the function f is
undefined on x, and [] denotes a nowhere-defined function. We denote with
f [x : y] the function that has the same value as f everywhere, except for x,
where it has the value y (even if f(x)↑).

The following is an example of a separation algebra RAM typically used
for reasoning about heap-manipulating programs:

Values = Z Vars = {x, y, . . .} Heaps = Locs ⇀fin Values

Locs = N Stacks = Vars ⇀fin Values RAM = Stacks× Heaps

A state consists of a stack and a heap, both finite partial functions mapping
variables or locations to their values. To simplify presentation, the algebra
does not include permissions [1,14]. We have also omitted logical variables;
see Section 2.4. The ∗ operation forms the disjoint union of stacks and heaps:
(s1, h1) ∗ (s2, h2) = (s1] s2, h1] h2). The unit element is a state with the
empty stack and heap: ([], []).

For the remainder, we fix a separation algebra (Σ, ∗, ε) and the correspond-
ing domain P(Σ)>. We further assume an assertion language for denoting
predicates over Σ, including ∨, ∧, ⇒ and ∗ connectives with the expected
interpretation, and the assertion emp denoting only the empty state ε. Tauto-
logical assertions are those whose meaning is Σ. We denote with JP K ∈ P(Σ)
the meaning of the assertion P . An assertion is precise if it denotes a precise
predicate.

5

Gotsman, Berdine, Cook

2.2 Primitive commands and local functions

The programming language we consider in this paper is parameterised by a
set PComm of primitive sequential commands. For every C ∈ PComm we
assume its denotation fC : Σ → P(Σ)>, which maps each pre-state to the
states obtained by executing C from it. As shown by Calcagno et al. [4],
for separation logic to be sound, transformers fC for primitive commands of
the programming language must behave in a local way with respect to the
structure present in Σ. The following definition formalises this condition.

Definition 2.2 (Local function) For a separation algebra (Σ, ∗, ε), a func-
tion f : Σ → P(Σ)> is local if for any states σ1, σ2 ∈ Σ such that σ1 ∗ σ2 is
defined, we have

f(σ1 ∗ σ2) v f(σ1) ∗ {σ2}.
Definition 2.2 is a concise way of formulating two conditions that the sound-

ness of separation logic relies on [17]: if f : Σ → P(Σ)> is the meaning of a
command C, then

(safety monotonicity) if executing C from a state σ1 ∗σ2 results in an error
f(σ1 ∗ σ2) = >, then executing C from a smaller state σ1 also produces an
error: > v f(σ1) ∗ {σ2} implies f(σ1) = >;

(frame property) if executing C from a state σ1 does not produce an error,
then executing C from a larger state σ1 ∗ σ2, has the same effect and leaves
σ2 unchanged: in this case we often have f(σ1 ∗ σ2) = f(σ1) ∗ {σ2}.

The requirement of locality rules out commands that can check if a cell is
allocated in the heap other than by trying to access it and faulting if it is
not allocated. For example, let Σ = RAM (see Section 2.1) and consider the
following function f : RAM→ P(RAM)>:

f(s, h) =

{
{(s, h′)}, if h(10) is defined;

{(s, h)}, otherwise,

where h′ is identical to h except it is undefined at 10. The function f defines
the denotation of a ‘command’ that disposes of the cell at the address 10 if it
is allocated and acts as a no-op if it is not. The function f is not local: take
σ1 = ([], []) and σ2 = ([], [10 : 0]), then

f(σ1 ∗ σ2) = f(([], []) ∗ ([], [10 : 0])) = f([], [10 : 0]) = {([], [])}

and

f(σ1) ∗ {σ2} = f([], []) ∗ {([], [10 : 0])} =

{([], [])} ∗ {([], [10 : 0])} = {([], [10 : 0])},

6

Gotsman, Berdine, Cook

hence, the inequality f(σ1 ∗ σ2) v f(σ1) ∗ {σ2} does not hold.

The pointwise lifting of a function f : Σ→ P(Σ)> to P(Σ)> is a function
f : P(Σ)> → P(Σ)> defined as follows: for all p ∈ P(Σ)>

f(p) =

{⊔
{f(σ) | σ ∈ p}, if p 6= >;

>, if p = >.

Given a denotation fC : Σ → P(Σ)> of a command C ∈ PComm, we can lift
it to a forward predicate transformer fC : P(Σ)> → P(Σ)>. We note that the
resulting transformer distributes over the t and u operations in the domain
P(Σ)>:

∀p, q ∈ P(Σ)>. fC(p t q) = fC(p) t fC(q); (1)

∀p, q ∈ P(Σ)>. fC(p u q) = fC(p) u fC(q). (2)

Furthermore, if the denotation is local, then for the corresponding transformer
we have:

∀p, q ∈ P(Σ)>. fC(p ∗ q) v fC(p) ∗ q.
We say that the predicate transformer is local when it satisfies this property.

Typical heap-manipulating commands can be interpreted over the algebra
Σ = RAM from Section 2.1. We refer to them in Section 5, where we formulate
and prove the data-race freedom theorem for concurrent separation logic. Let
E,F range over integer expressions and B over Boolean expressions:

x ∈ Vars

E,F ::= NULL | x | E + F | . . .

B ::= E = F | ¬B | . . .

We consider the following set RAMComm of primitive sequential commands:

RAMComm ::= skip | x=E | x=[E] | [E]=F | x=new | delete E | assume(B)

As usual, square brackets denote pointer dereferencing. The assume(B) com-
mand acts as a filter on the state space of programs—B is assumed to be true
after assume(B) is executed. We define denotations fC : RAM → P(RAM)>

for C ∈ RAMComm using the transition relation ;: RAMComm × RAM ×
(RAM ∪ {>}) shown in Figure 1: for all σ ∈ RAM

fC(σ) =
⊔{
{|σ′}| | C, σ ; σ′

}
.

It is not difficult to show that fC is local for every C ∈ RAMComm [4].

In the rest of this paper, we assume local denotations fC : Σ→ P(Σ)> of
commands C ∈ PComm and their liftings to predicate transformers.

7

Gotsman, Berdine, Cook

skip, (s, h) ; (s, h)

x=E, (s[x : u], h) ; (s[x : JEKs[x : u]], h)

x=[E], (s[x : u], h[JEKs[x : u] : b]) ; (s[x : b], h[JEKs[x : u] : b]),

[E]=F, (s, h[JEKs : u]) ; (s, h[JEKs : JF Ks])

x=new, (s[x : u], h) ; (s[x : b], h[b : w]), if h(b)↑

delete E, (s, h[JEKs : u]) ; (s, h), if h(JEKs)↑

assume(B), (s, h) ; (s, h), if JBKs = true

assume(B), (s, h) 6; if JBKs = false

C, (s, h) ; >, otherwise

Fig. 1. Transition relation for primitive commands RAMComm. > indicates that the command
faults. 6; is used to denote that the command does not fault, but gets stuck. We denote with
JEKs ∈ Values and JBKs ∈ {true, false} the values of the expressions in the stack s.

2.3 The logic

We consider a variant of concurrent separation logic [12] for a concurrent pro-
gramming language in which programs consist of a parallel composition of
several threads (processes) that use locks (mutexes) `1, . . . , `m for synchroni-
sation. The syntax of programs S is as follows:

C ::= PComm | C;C | C + C | C∗ | acquire(`k); C; release(`k)

S ::= C ‖ . . . ‖ C

The code of threads can include primitive sequential commands from PComm,
sequential composition C;C, choice C + C, iteration C∗ and (syntactically
scoped) critical regions over the available locks.

When PComm includes the assume statement, the standard commands for
conditionals, loops and conditional critical regions (CCRs) can be defined in
our programming language as follows:

if B then C1 else C2 = (assume(B);C1) + (assume(¬B);C2)

while B do C = (assume(B);C)∗; assume(¬B)

with ` when B do C = acquire(`); assume(B);C; release(`)

The original concurrent separation logic also considers nested parallel com-
positions and explicit lock declarations. The restricted form of programs cho-
sen here simplifies the formal development and makes the underlying ideas
more explicit. Our results have been extended to dynamically-allocated locks

8

Gotsman, Berdine, Cook

fC(JP K) v JQK
I ` {P} C {Q}

Prim

I ` {P} C1 {Q} I ` {Q} C2 {R}
I ` {P} C1;C2 {R}

Seq

I ` {P} C1 {Q} I ` {P} C2 {Q}
I ` {P} C1 + C2 {Q}

Choice

I ` {P} C {P}
I ` {P} C∗ {P}

Loop

I ` {P1} C {Q1} I ` {P2} C {Q2}
I ` {P1 ∨ P2} C {Q1 ∨Q2}

Disj

I ` {P1} C {Q1} I ` {P2} C {Q2}
I ` {P1 ∧ P2} C {Q1 ∧Q2}

Conj

P1 ⇒ P2 I ` {P2} C {Q2} Q2 ⇒ Q1

I ` {P1} C {Q1}
Conseq

I ` {P} C {Q}
I ` {P ∗R} C {Q ∗R}

Frame

I ` {emp} acquire(`k) {Ik}
Acquire

I ` {Ik} release(`k) {emp}
Release

I ` {P1} C1 {Q1} . . . I ` {Pn} Cn {Qn}
I ` {P1 ∗ . . . ∗ Pn} C1 ‖ . . . ‖ Cn {Q1 ∗ . . . ∗Qn}

Par

Fig. 2. Proof rules of concurrent separation logic

and dynamically-created threads (see [8]), which are more general constructs
than lock declarations and parallel compositions.

The judgements of concurrent separation logic are of the form I `
{P} C {Q}, where C is a command in the code of a thread, P and Q are as-
sertions describing the local state of the thread and I is the vector of resource
invariants Ik for all the locks `k in the program. Intuitively, the judgement
means that, if the thread starts executing C from an initial local state satis-
fying P , then it accesses only its local part of the state, respects the resource
invariants I, and terminates only in local states satisfying Q.

The proof rules of concurrent separation logic are summarised in Figure 2.
Most of the rules are standard ones from Hoare logic. We have a single axiom
for primitive commands (Prim), which allows any pre- and postconditions

9

Gotsman, Berdine, Cook

consistent with the predicate transformer for the command. For a particu-
lar set of states Σ and denotations fC of C ∈ PComm, this axiom can be
specialised to several syntactic versions, obtaining a concrete instance of the
abstract logic presented here [1,14,15]. The conjunction rule (Conj) is useful
for combining the results of two proofs, and the disjunction rule (Disj) for
proof by cases. The frame rule (Frame) states that executing a command in
a bigger local state does not change its behaviour.

Locks are treated in the logic as follows. When a thread acquires a lock, it
receives the ownership of a part of the state satisfying the resource invariant
of the lock (Acquire). Before releasing the lock, the thread must re-establish
the corresponding resource invariant. After the lock is released, the thread
relinquishes the ownership of its resource invariant (Release). Note that we
can obtain global versions of the axioms Acquire and Release by closing
them under the frame rule:

I ` {P} acquire(`k) {P ∗ Ik} I ` {P ∗ Ik} release(`k) {P}

Finally, the Par rule combines judgements about several threads into a
judgement for the whole program of the form I ` {P} S {Q}.

2.4 Logical variables

In program proofs we often need to use so-called logical (aka ghost) variables,
which appear in assertions, but not in programs. We now show how the logic
can be extended with proof rules for manipulating such variables.

Let us fix a set of integer logical variables LVars = {X, Y, . . .} and let
Ints = LVars→ Z be the set of their interpretations. We say that a separation
algebra Σ is an algebra with logical variables, if for some separation algebra Σ′

we have Σ = Σ′ × Ints and the ∗ operation on Σ is defined as follows:

(σ1, i1) ∗ (σ2, i2) = (σ1 ∗ σ2, i1),

if i1 = i2, and is undefined, otherwise.

For example, let RAM′ = RAM × Ints for the separation algebra RAM
defined in Section 2.1 with the ∗ operation on RAM lifted to RAM′ as above.
Then RAM′ is a separation algebra with logical variables.

Given a function f : Σ′ → P(Σ′)> on the underlying algebra without
logical variables, we can lift it to a function f : Σ → P(Σ)> on the algebra
with logical variables as follows:

f(σ, i) =

{
f(σ)× {i}, if f(σ) 6= >;

>, if f(σ) = >.

10

Gotsman, Berdine, Cook

Let Σ be an algebra with logical variables, and assume an assertion lan-
guage with quantifiers over logical variables:

P ::= . . . | ∃X.P | ∀X.P

where the satisfaction relation is defined as follows:

(σ, i) |= ∃X.P ⇔ ∃u. (σ, i[X : u]) |= P

(σ, i) |= ∀X.P ⇔ ∀u. (σ, i[X : u]) |= P

When the functions fC defining the semantics of primitive sequential com-
mands are lifted from functions on the underlying algebra without logical
variables, we can extend concurrent separation logic with the following two
proof rules for manipulating logical variables:

I ` {P} C {Q}
I ` {∃X.P} C {∃X.Q}

Exists
I ` {P} C {Q}

I ` {∀X.P} C {∀X.Q}
Forall

3 Programming language and semantics

We now define the simple operational semantics with respect to which we
prove soundness. From now on, we fix a program S = C1 ‖ . . . ‖ Cn in our
concurrent programming language consisting of n threads C1, . . . , Cn that use
m locks `1, . . . , `m for synchronisation.

It is technically convenient to abstract from the particular syntax of
the programming language and represent each thread in a program with its
control-flow graph (CFG). A CFG is defined as a tuple (N, T, start, end), where
N is the set of program points, T ⊆ N×Comm×N is the control-flow relation,
and start and end are distinguished initial and final program points. Edges
in the CFG are labelled with commands from the set Comm, which consists
of primitive sequential commands PComm, lock acquires acquire(`k) and re-
leases release(`k). We assume, without loss of generality, that control-flow
relations have no edges leading to start or from end.

We note that the code of a thread in our language can be translated to a
CFG in a standard way. Namely, assume the set PComm of primitive sequen-
tial commands includes the skip statement. Then the CFG of a command C
is constructed by induction on its syntax as follows:

(i) A primitive command C ∈ PComm has the CFG

({start, end}, {(start, C, end)}, start, end).

(ii) Assume C1 and C2 have CFGs

(N1, T1, start1, end1) and (N2, T2, start2, end2), (3)

11

Gotsman, Berdine, Cook

(v, C, v′) ∈ T C ∈ PComm fC(σ) 6= > σ′ ∈ fC(σ)

pc[k : v], σ →S pc[k : v′], σ′

(v, release(`j), v
′) ∈ T

pc[k : v], σ →S pc[k : v′], σ

(v, C, v′) ∈ T C ∈ PComm fC(σ) = >
pc[k : v], σ →S pc[k : v′],>

(v, acquire(`j), v
′) ∈ T j ∈ Free(pc[k : v])

pc[k : v], σ →S pc[k : v′], σ

Fig. 3. Operational semantics

respectively. Then C1;C2 has the CFG

(N1 ∪N2, T1 ∪ T2 ∪ {(end1, skip, start2)}, start1, end2).

(iii) Assume C1 and C2 have CFGs (3). Then C1 + C2 has the CFG

(N1 ∪N2 ∪ {start, end}, T1 ∪ T2 ∪ {(start, skip, start1), (start, skip, start2),

(end1, skip, end), (end2, skip, end)}, start, end).

(iv) Assume C has a CFG (N, T, start, end). Then C∗ has the CFG

(N ∪ {start′, end′}, T ∪ {(start′, skip, start), (end, skip, start),

(end, skip, end′)}, start′, end′).

Thus, let us represent each thread Ck in S by its CFG (Nk, Tk, startk, endk).
Let N =

⊎n
k=1 Nk and T =

⊎n
k=1 Tk be the set of program points and the

control-flow relation of the program S, respectively.

The interleaving operational semantics of the program S is defined by a
transition relation→S that transforms pairs of program counters (represented
by mappings from thread identifiers to program points) and program states:

→S: (({1, . . . , n} → N)× Σ)× (({1, . . . , n} → N)× (Σ ∪ {>})).

Note that since the critical regions formed by acquire and release commands
are syntactically scoped in our programming language, we can determine the
set Free(pc) ⊆ {1, . . . ,m} of indices of free locks at every program counter
pc ∈ {1, . . . , n} → N , i.e., the set of locks that are not held by any thread.
The relation →S is defined by the rules in Figure 3. The semantics executes
commands from PComm atomically. Note also that, according to our seman-
tics, a thread that tries to acquire the same lock twice gets stuck.

12

Gotsman, Berdine, Cook

Let us denote with pc0 the initial program counter [1 : start1] . . . [n : startn]
and with pcf the final one [1 : end1] . . . [n : endn]. We say that the program
S is safe when run from an initial state σ0 ∈ Σ, if it is not the case that
pc0, σ0 →∗S pc,> for some program counter pc.

4 Proof of soundness

The purpose of this section is to prove the following theorem, stating the
soundness of the logic presented in Section 2.3.

Theorem 4.1 (Soundness) Assume I ` {P} S {Q}, where either

• resource invariants in I are precise and the ∗ operation is cancellative; or

• Conj is not used in the derivation of the triple.

Then for any σ0 ∈ Σ such that

σ0 ∈ P ∗
(

m
~
k=1

JIkK
)
, (4)

the program S is safe when run from σ0, and if pc0, σ0 →∗S pcf , σ, we have

σ ∈ Q ∗
(

m
~
k=1

JIkK
)
. (5)

4.1 Thread-local interpretation and Separation Property

A semantic proof is defined as a triple (C,G, I), where

• C is a command with a CFG (N, T, start, end);

• G : N → P(Σ) maps program points of C to semantic annotations;

• I ∈ (P(Σ))m is a vector of resource invariant denotations Ik ∈ P(Σ),
k = 1..m

such that for all edges (v, C ′, v′) ∈ T
• if C ′ ∈ PComm, then

fC′(G(v)) v G(v′); (6)

• if C ′ is acquire(`k), then

G(v) ∗ Ik ⊆ G(v′); (7)

• if C ′ is release(`k), then

G(v) ⊆ G(v′) ∗ Ik. (8)

Note that the elements of P(Σ) assigned to program points by the semantic
annotation mapping G in this definition are similar to label invariants in proof

13

Gotsman, Berdine, Cook

systems for unstructured control flow [7]. Inequalities (6), (7) and (8) are
semantic counterparts of the axioms Prim and the global versions of Acquire
and Release, respectively.

The thread-local interpretation of a command is given by its semantic proof.
In Section 4.2 we show how to extract a semantic proof for a thread in the
program from its syntactic proof in concurrent separation logic.

As we explained in Section 1, the core of our proof of soundness consists
of establishing the Separation Property [12]: at any time, the state of the
program can be partitioned into that owned by each thread and each free
lock. The following lemma formalises the property in the case where the
local states of threads are defined by their semantic proofs. This establishes
a correspondence between our thread-local interpretation and the operational
semantics of Section 3.

Lemma 4.2 (Separation Property) Assume semantic proofs (Ck, Gk, I),
k = 1..n. If σ0 ∈ Σ is such that

{σ0} v
(

n
~
k=1

Gk(startk)

)
∗
(

~
k∈{1,...,m}

Ik
)
, (9)

then, whenever pc0, σ0 →∗S pc, σ, we have

{|σ}| v
(

n
~
k=1

Gk(pc(k))

)
∗
(

~
k∈Free(pc)

Ik
)
. (10)

Proof We prove the statement of the theorem by induction on the length of
the derivation of σ in the operational semantics of the program S. In the base
case (10) is equivalent to (9). Suppose now that

pc0, σ0 →∗S pc[j : v], σ →S pc[j : v′], σ′.

Then (v, C, v′) ∈ T for some atomic command C ∈ Comm. We have to show
that if

{σ} v
(

n
~
k=1

Gk((pc[j : v])(k))

)
∗
(

~
k∈Free(pc[j:v])

Ik
)
, (11)

then

{|σ′}| v
(

n
~
k=1

Gk((pc[j : v′])(k))

)
∗
(

~
k∈Free(pc[j:v′])

Ik
)
. (12)

There are three cases corresponding to the type of the command C.

Case 1. C ∈ PComm. In this case Free(pc[j : v]) = Free(pc[j : v′]). Let

r =

(
~

1≤k≤n,
k 6=j

Gk(pc(k))

)
∗
(
~
k∈W
Ik
)
, (13)

14

Gotsman, Berdine, Cook

where W = Free(pc[j : v]) = Free(pc[j : v′]). Then

{|σ′}| v fC({σ}) definition of →S

v fC(Gj(v) ∗ r) (11)

v fC(Gj(v)) ∗ r fC is local

v Gj(v
′) ∗ r (6)

Case 2. C is acquire(`i). In this case i ∈ Free(pc[j : v]) and i 6∈ Free(pc[j :
v′]). Let r be defined by (13) with W = Free(pc[j : v]) \ {i} = Free(pc[j : v′]).
Then

{|σ′}| = {σ} definition of →S

v Gj(v) ∗ Ii ∗ r (11)

v Gj(v
′) ∗ r (7)

Case 3. C is release(`i). In this case i 6∈ Free(pc[j : v]) and i ∈ Free(pc[j :
v′]). Let r be defined by (13) with W = Free(pc[j : v]) = Free(pc[j : v′]) \ {i}.
Then

{|σ′}| = {σ} definition of →S

v Gj(v) ∗ r (11)

v Gj(v
′) ∗ Ii ∗ r (8)

In all cases we get inequalities equivalent to (12), completing the induction.2

4.2 Soundness with respect to thread-local interpretation

To prove Theorem 4.1, we first define a notion of validity of Hoare triples
with respect to the thread-local interpretation of Section 4.1 and prove the
soundness of the proof rules in this interpretation. Soundness of the logic with
respect to the concrete semantics is then a direct consequence of Lemma 4.2.

Definition 4.3 We write I � {P} C {Q} if there exists a semantic proof
(C,G, JIK) such that G(start) = JP K and G(end) ⊆ JQK, where start and end
are the starting and the final program points of the CFG of C.

We say that an inference rule is sound with respect to the thread-local
interpretation if it preserves validity of judgements (as defined by the relation
� above).

Lemma 4.4 Prim, Acquire, Release, Seq, Choice, Loop and Conseq
are sound with respect to the thread-local interpretation.

Proof For illustration, we consider the cases Prim and Seq of this easy
lemma and omit the others.

15

Gotsman, Berdine, Cook

Prim. Consider an application I ` {P} C {Q} of the axiom Prim,
where C ∈ PComm. Then fC(JP K) v JQK. According to the encoding
of commands into CFGs from Section 3, the command C has the CFG
({start, end}, {(start, C, end)}, start, end). Let G(start) = JP K and G(end) =
JQK, then fC(G(start)) v G(end). Thus, (G,C, JIK) is a semantic proof and
I � {P} C {Q} as required.

Seq. Assume I � {P} C1 {Q} and I � {Q} C2 {R}. Let the CFGs of
C1 and C2 be (N1, T1, start1, end1) and (N2, T2, start2, end2), respectively. Then
C1;C2 has the CFG (N1∪N2, T1∪T2∪{(end1, skip, start2)}, start1, end2). There
exist semantic proofs (C1, G1, JIK) and (C2, G2, JIK) such that

G1(start1) = JP K, G1(end1) ⊆ JQK, G2(start2) = JQK, G2(end2) ⊆ JRK.

Let G(v) = G1(v) for v ∈ N1 and G(v) = G2(v) for v ∈ N2. We have
fskip(G1(end2)) v G2(start1). Thus, (G, (C1;C2), JIK) is a semantic proof and
I � {P} C1;C2 {R}. 2

We now proceed to prove the soundness of the rules Frame, Disj and
Conj. To this end, we show that we can construct semantic proofs for the
conclusions of these rules from semantic proofs for their premisses. This is
essentially a semantic counterpart of a proof that these rules are admissible
in the logic including the global Acquire and Release axioms, i.e., that a
derivation using these rules can be converted into a derivation that does not
use them. By using semantic proofs instead of derivations in our proof system,
we avoid having to deal with the syntactic form of the proof rules in the logic
and the control-flow constructs in our programming language.

Lemma 4.5 (i) For any r ∈ P(Σ), if (C,G, I) is a semantic proof, then so
is (C,G′, I), where ∀v.G′(v) = G(v) ∗ r.

(ii) If (C,G1, I) and (C,G2, I) are semantic proofs, then so is (C,G′, I),
where ∀v.G′(v) = G1(v) ∪G2(v).

(iii) If (C,G1, I) and (C,G2, I) are semantic proofs, then so is (C,G′, I),
where ∀v.G′(v) = G1(v)∩G2(v), provided the resource invariant denota-
tions in I are precise and the ∗ operation is cancellative.

Proof Consider an edge (v, C ′, v′) in the CFG of the command C. When
C ′ ∈ PComm, inequality (6) for the new semantic annotation G′ follows from
the fact that the predicate transformer fC′ is local and distributes over t and
u. The latter is true by construction of transformers defined by pointwise
lifting from Σ; see (1) and (2). We omit the easy case when C ′ is acquire(`k).
Suppose now that C ′ is release(`k). We consider every case of the lemma in
turn.

16

Gotsman, Berdine, Cook

(i) By the definition of G′, we have

G′(v) = G(v) ∗ r ⊆ G(v′) ∗ Ik ∗ r = G′(v′) ∗ Ik.

(ii) The ∗ operation distributes over ∪:

∀p1, p2, q ∈ P(Σ). (p1 ∪ p2) ∗ q = (p1 ∗ q) ∪ (p2 ∗ q).

Hence,

G′(v) = G1(v) ∪G2(v) ⊆ (G1(v′) ∗ Ik) ∪ (G2(v′) ∗ Ik) =

(G1(v′) ∪G2(v′)) ∗ Ik = G′(v′) ∗ Ik.

(iii) It is well-known [4] that if ∗ is cancellative, then for a precise q ∈ P(Σ)
and any p1, p2 ∈ P(Σ) we have

(p1 ∩ p2) ∗ q = (p1 ∗ q) ∩ (p2 ∗ q). (14)

Thus, in this case we establish

G′(v) = G1(v) ∩G2(v) ⊆ (G1(v′) ∗ Ik) ∩ (G2(v′) ∗ Ik) =

(G1(v′) ∩G2(v′)) ∗ Ik = G′(v′) ∗ Ik.

In all cases we get (8), which completes the proof. 2

Corollary 4.6 The rules Frame and Disj are sound with respect to the
thread-local interpretation. So is Conj when the resource invariants in I are
precise and the ∗ operation is cancellative.

Lemma 4.7 If I ` {P} C {Q} and the restrictions on the derivation from
Theorem 4.1 hold, then I � {P} C {Q}.

The proof is by induction on the derivation of I ` {P} C {Q} using
Lemma 4.4 and Corollary 4.6.

4.3 The proof

Proof of Theorem 4.1 Let I ` {Pk} Ck {Qk} be the thread-local triples
used in the rule Par to derive I ` {P} S {Q}. Then JP K = (~nk=1 JPkK) and
JQK = (~nk=1 JQkK). By Lemma 4.7, I � {Pk} Ck {Qk} for k = 1..n, hence,
by Definition 4.3, there exist semantic proofs (Ck, Gk, JIK), k = 1..n such that
Gk(startk) = JPkK and Gk(endk) ⊆ JQkK. Consider a state σ0 satisfying (4).
Let I = JIK in Lemma 4.2, then (9) is fulfilled. We have ∀v.Gk(v) 6= >.
Therefore, for any pc and σ such that pc0, σ0 →∗S pc, σ, from (10) we get

17

Gotsman, Berdine, Cook

{|σ}| @ >, i.e., S is safe when run from σ0. Now letting pc = pcf in (10), we
get (5). 2

Note that (14) does not hold in general for imprecise q. Thus, the conjunc-
tion of two semantic proofs is not necessarily a semantic proof, and Lemma 4.5
may not be extended to show the soundness of the conjunction rule in the case
of imprecise resource invariants. This is expected: the famous Reynolds coun-
terexample [12] shows that in this case concurrent separation logic is unsound.

The intuitive reason for the unsoundness is that imprecise resource in-
variants allow splitting the heap at a release command in different ways in
different branches of the proof. Hence, in the two premisses of Conj there
may be different understandings of what the partitioning of the global heap
into thread-local and protected parts should be. Trying to ∧-conjoin two such
judgements about the local state of a thread then leads to inconsistency. Note
that the simplicity of the interpretation using semantic proofs comes from not
abstracting away from the crucial partitioning choice details. Thus, conflicting
partitioning choices lead to directly conflicting semantic proofs.

4.4 Logical variables

Assume that Σ is an algebra with logical variables, i.e., Σ = Σ′×Ints, and that
the functions fC for C ∈ PComm are lifted from functions on Σ′ (Section 2.4).
In this case, we can add to the logic the rules Exists and Forall. We say
that p ∈ P(Σ) does not depend on the interpretation of logical variables, if for
any (σ′, i) ∈ p and i′ ∈ Ints we have (σ′, i′) ∈ p. For the rules to be sound in a
concurrent setting, we must require that the denotations of resource invariants
do not depend on interpretations. In the case when we include Forall, we
must additionally require that the resource invariants be precise and the ∗
operation be cancellative.

For a logical variable X let Exists(X) : P(Σ) → P(Σ), respectively,
Forall(X) : P(Σ) → P(Σ) be the semantic counterparts of existential, re-
spectively, universal quantification of X, defined as follows:

Exists(X, p) = {(σ′, i) | ∃u. (σ′, i[X : u]) ∈ p};
Forall(X, p) = {(σ′, i) | ∀u. (σ′, i[X : u]) ∈ p}.

The proof of soundness of Exists and Forall with respect to the
thread-local interpretation is done by establishing the following analogue of
Lemma 4.5.

Lemma 4.8 Under the above conditions, for any logical variable X and re-
source invariants I that do not depend on interpretations:

18

Gotsman, Berdine, Cook

(i) If (C,G, I) is a semantic proof, then so is (C,G′, I), where ∀v.G′(v) =
Exists(X,G(v)).

(ii) If (C,G, I) is a semantic proof, then so is (C,G′, I), where ∀v.G′(v) =
Forall(X,G(v)), provided the resource invariant denotations in I are pre-
cise and the ∗ operation is cancellative.

The proof is similar to that of Lemma 4.5. It follows that Theorem 4.1
holds for the logic extended with the rules Exists and Forall, subject to
the conditions given above.

5 Data-race freedom

We now show that the provability of a program in our logic implies that the
program has no data races. We formalise the notion of data-race freedom and
prove this result for the case when Σ = RAM (Section 2.1) and PComm =
RAMComm (Section 2.2).

For a state σ ∈ Σ let accesses(C, σ), respectively, writes(C, σ) be the set of
variables and locations that a primitive sequential command C ∈ RAMComm
may access (i.e., read, write, or dispose), respectively, write to or dispose,
when run from the state σ according to the semantics of commands RAMComm
defined in Figure 1.

Definition 5.1 (Interfering commands) Commands C ′ and C ′′ from
RAMComm interfere with each other when executed from the state σ ∈ RAM,
denoted with C ′ ./σ C

′′, if

(accesses(C ′, σ) ∩ writes(C ′′, σ) 6= ∅) ∨ (writes(C ′, σ) ∩ accesses(C ′′, σ) 6= ∅).

Given this formulation of interference, the usual notion of data races is
formulated as follows.

Definition 5.2 (Data race) Program S has a data race when run from an
initial state σ0 ∈ RAM if for some i, j and pc such that i 6= j, pc(i) = vi
and pc(j) = vj and state σ ∈ RAM such that pc0, σ0 →∗S pc, σ, there exist
CFG edges (vi, C

′, v′i) ∈ Ti and (vj, C
′′, v′j) ∈ Tj in the control-flow relations of

threads i and j labelled with commands C ′ and C ′′ from RAMComm such that

C ′, σ 6; >; C ′′, σ 6; >; C ′ ./σ C
′′. (15)

We first prove that the existence of a thread-local interpretation for a
program (as defined in Lemma 4.2) implies data-race freedom.

Lemma 5.3 Under the conditions of Lemma 4.2 with Σ = RAM and
PComm = RAMComm, the program S has no data races when run from initial
states σ0 satisfying (9).

19

Gotsman, Berdine, Cook

Proof Suppose the contrary: there exist i, j and pc such that i 6= j, pc(i) = vi
and pc(j) = vj, a state σ such that pc0, σ0 →∗S pc, σ, CFG edges (vi, C

′, v′i) ∈ Ti
and (vj, C

′′, v′j) ∈ Tj labelled with commands C ′ and C ′′ from RAMComm such
that (15) holds.

By Lemma 4.2, σ ∈ r ∗G(vi) ∗G(vj) for some r. Hence,

σ = σ0 ∗ σ1 ∗ σ2, (16)

where

σ0 ∈ r, σ1 ∈ G(vi), σ2 ∈ G(vj). (17)

Since the values of G are distinct from >, it follows that fC′(G(vi)) @ >
and fC′′(G(vj)) @ >. From this and (17) we obtain fC′(σ1) v fC′(G(vi)) @ >.
So, fC′(σ1) @ > and, analogously, fC′′(σ2) @ >. Hence, C ′, σ1 6; > and
C ′′, σ2 6; >. From this and the fact that C ′ ./σ C

′′ using the definitions of
∗ and the predicate transformers for commands in RAMComm, we easily get
that σ1 ∗ σ2 is undefined, which contradicts (16). The intuition behind this is
that from C ′, σ1 6; > and C ′′, σ2 6; > it follows that both σ1 and σ2 should be
defined on the same variable or location accessed by C ′ and C ′′, which makes
the state σ1 ∗ σ2 inconsistent. 2

As a corollary of Lemma 5.3, we easily get the data-race freedom theorem.

Corollary 5.4 (Data-race freedom) Under the conditions of Theorem 4.1
with Σ = RAM and PComm = RAMComm, the program S has no data races
when run from initial states σ0 satisfying (4).

6 Conclusion

Conceptually, the idea of our proof of soundness is simple: we show the Sep-
aration Property by induction on a derivation in the operational semantics.
Our proof expresses this property directly as an invariant preserved by con-
current executions, and thus does not need to unpick concurrent executions
into constituent sequential ones and there track changing splittings.

Our use of semantic proofs is inspired by program analyses based on ab-
stract interpretation [5], which compute mappings from program points to
elements of an abstract domain denoting sets of states. Proofs of soundness
for such analyses rely crucially on the intentional information provided by
the mappings. In fact, our proof of the Separation Property (Lemma 4.2)
is almost identical to the proof soundness of a program analysis for inferring
resource invariants in concurrent separation logic we have previously devel-
oped [9]. The aim of this paper has been to argue that the approach based on

20

Gotsman, Berdine, Cook

semantic proofs is also useful in proving the soundness of program logics and
to demonstrate the corresponding techniques in a clean setting.

In this paper, we presented our results for a simplistic programming lan-
guage. However, we have also applied our approach to more expressive lan-
guages, including dynamic lock allocation and deallocation, dynamic thread
creation and first-order procedures; see [8]. Additionally, we have applied it to
prove the soundness of a logic for verifying preemptive OS kernels [10], which
establishes a form of refinement. From our experience, the approach provides
a low-cost way of proving the soundness of complicated concurrency logics.

An interesting question for future research raised by our results is whether
there are other ways to ensure the soundness of the conjunction rule other
than requiring precision. After all, equation (14), which is the only place in
the proof where precision is used, may be satisfied even if the predicate q in it
is imprecise. Intuitively, for the conjunction rule to be sound, the proofs being
combined have to split the state in the same way at every release command
in the program. One way to enforce this is to require that the postcondition of
release in the proofs be computed as a function of the precondition. Unfortu-
nately, our preliminary investigations show that straightforward formulations
of such functions may invalidate the frame rule. The possible fixes are not
pretty, and the appropriate solution seems to depend on the particular class
of programs considered.

Acknowledgements We would like to thank Peter O’Hearn, Hongseok Yang
and the anonymous reviewers for helpful comments and suggestions.

References

[1] R. Bornat, C. Calcagno, P. W. O’Hearn, and M. Parkinson. Permission accounting in
separation logic. In POPL’05: Symposium on Principles of Programming Languages, pages
259–270. ACM, 2005.

[2] S. D. Brookes. A semantics of concurrent separation logic. Theor. Comput. Sci., 375(1-3):227–
270, 2007. Preliminary version appeared in CONCUR’04: Conference on Concurrency Theory.

[3] C. Calcagno, D. Distefano, and V. Vafeiadis. Compositional resource invariant synthesis. In
APLAS’09: Asian Symposium on Programming Languages and Systems. Springer, 2009.

[4] C. Calcagno, P. W. O’Hearn, and H. Yang. Local action and abstract separation logic. In
LICS’07: Symposium on Logic in Computer Science, pages 366–378. IEEE, 2007.

[5] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis
of programs by construction or approximation of fixpoints. In POPL’77: Symposium on
Principles of Programming Languages, pages 238–252. ACM, 1977.

[6] P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In POPL’79:
Symposium on Principles of Programming Languages, pages 269–282. ACM, 1979.

[7] A. de Bruin. Goto statements: Semantics and deduction systems. Acta Inf., 15:385–424, 1981.

[8] A. Gotsman. Logics and analyses for concurrent heap-manipulating programs. PhD Thesis.
Technical Report UCAM-CL-TR-758, University of Cambridge Computer Laboratory, 2009.

21

Gotsman, Berdine, Cook

[9] A. Gotsman, J. Berdine, B. Cook, and M. Sagiv. Thread-modular shape analysis. In PLDI’07:
Conference on Programming Languages Design and Implementation, pages 266–277. ACM,
2007.

[10] A. Gotsman and H. Yang. Modular verification of preemptive OS kernels. In IFCP’11:
International Conference on Functional Programming, 2011. To appear.

[11] J. Hayman and G. Winskel. Independence and concurrent separation logic. In LICS’06:
Symposium on Logic in Computer Science, pages 147–156. IEEE, 2006.

[12] P. W. O’Hearn. Resources, concurrency and local reasoning. Theor. Comput. Sci., 375(1-
3):271–307, 2007. Preliminary version appeared in CONCUR’04: Conference on Concurrency
Theory.

[13] P. W. O’Hearn, H. Yang, and J. C. Reynolds. Separation and information hiding. ACM Trans.
Program. Lang. Syst., 31(3):1–50, 2009. Preliminary version appeared in POPL’04: Symposium
on Principles of Programming Languages.

[14] M. Parkinson, R. Bornat, and C. Calcagno. Variables as resource in Hoare logics. In LICS’06:
Symposium on Logic in Computer Science, pages 137–146. IEEE, 2006.

[15] J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In LICS’02:
Symposium on Logic in Computer Science, pages 55–74. IEEE, 2002.

[16] H. Yang, O. Lee, J. Berdine, C. Calcagno, B. Cook, D. Distefano, and P. O’Hearn. Scalable
shape analysis for systems code. In CAV’08: Conference on Computer Aided Verification,
volume 5123 of LNCS. Springer, 2008.

[17] H. Yang and P. W. O’Hearn. A semantic basis for local reasoning. In FOSSACS’02: Conference
on Foundations of Software Science and Computation Structures, volume 2303 of LNCS, pages
402–416. Springer, 2002.

22

	Introduction
	Concurrent separation logic
	Assertions
	Primitive commands and local functions
	The logic
	Logical variables

	Programming language and semantics
	Proof of soundness
	Thread-local interpretation and Separation Property
	Soundness with respect to thread-local interpretation
	The proof
	Logical variables

	Data-race freedom
	Conclusion
	References

