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Abstract. Consequence finding is used in many applications of deduction. This
paper develops and evaluates a suite of optimized SMT-based algorithms for com-
puting equality consequences over arbitrary formulas and theories supported by
SMT solvers. It is inspired by an application in the SLAYER analyzer, where our
new algorithms are commonly 10–100x faster than simpler algorithms. The main
idea is to incrementally refine an initially coarse partition using models extracted
from a solver. Our approach requires only O.N/ solver calls for N terms, but
in the worst case creates O.N 2/ fresh subformulas. Simpler algorithms, in con-
trast, require O.N 2/ solver calls. We also describe an asymptotically superior
algorithm that requires O.N/ solver calls and only O.N logN/ fresh subformu-
las. We evaluate algorithms which reduce the number of fresh formulas required
either by using specialized data structures or by relying on subformula sharing.
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1 Introduction

We define and evaluate optimized algorithms for computing all equalities between terms
of a fixed set that are implied by a fixed constraint. As a example, consider the formula

˚ W .a' b ^ bŒi �' c/ _ .aŒi ��4' d ^ f .d/' dC3 ^ f .d/C1' c/

where _Œ_� denotes array selection. ˚ implies the equality aŒi � ' c, but not a ' b,
aŒi �' bŒi �, nor d ' c. On the other hand, the formula

˚ 0 W ˚ _ .bŒi �' c ^ c ' d/

does not imply any equality between a; b; c; d; aŒi � and bŒi �. We describe and evalu-
ate algorithms that require a number of SMT-solver calls that is at worst linear in the
number of termsN; although they may potentially create quadratically-many fresh liter-
als. Naïve algorithms for computing all equalities implied by a formula require O.N 2/

SMT-solver calls. The simplest, called Basic Partition Merging (BPM), is 10–1000x
slower than a model-based variant, Model-based Partition Merging (MPM). Starting
with Basic (BPR) and Incremental (IPR) Partition Refinement algorithms, we examine
several variants that are all significantly (1–100x) faster than MPM. In a quest of asymp-
totically better solutions, we also outline an algorithm that requires only O.N logN/
fresh subformulas.
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Application and Evaluation of Equality Inference The experimental evaluation
of the algorithms uses problem instances that the SLAYER [1] program analyzer en-
counters while attempting to verify memory safety properties of C programs. SLAYER
relies on learning implied equalities, and previously used simpler algorithms that would
sometimes exhibit catastrophic performance. This prompted the development of more
sophisticated algorithms. We evaluated both the folklore and the new algorithms in the
context of the SLAYER tool and found that the simpler algorithms are impractical be-
cause they either require a quadratic number of solver calls, or are non-incremental:
they effectively reset the solver state between several calls. The practical evaluation
demonstrates the advantages of the new algorithms.

Consequence finding is a central component of abstract interpreters. The set of
reachable states can be approximated by the least fixed point of a predicate transformer,
and analyses based on abstract interpretation commonly develop special classes and
representations of logical formulas where approximations of the least fixed point can be
computed. For example, analyses using the octagon abstract domain [9] can be thought
of as computing consequences as a conjunction of constraints using unit coefficients and
two variables per inequality. The TVLA system [8, 14] is distinguished as it produces
shape formulas as a result of bottom-up evaluation of Horn clauses.

The SLAYER tool synthesizes separation logic formulas in an approximation of
the least fixed-point semantics of programs. This approach serves as a foundation for
a verification tool for analyzing heap properties of C programs. In order to compute
precise abstractions, SLAYER relies on learning all implied equalities from a formula.
An example symbolic state is the formula 9x; y: ˚ � 	 , where ˚ is defined above and

	 W list.p; x/ � x 7!c � list.q; y/ � y 7!aŒi � :

SLAYER weakens the formula to list.p; c/ � list.q; c/. The first step of this abstraction
is to replace list.p; x/ � x 7!c with list.p; c/, forgetting that x is on the list from p to
c. This rewrite would not be performed if x could begin a shared tail between two lists.
Checking this requires learning that neither x'q, x'y nor x'aŒi � are implied, any of
which would make x begin a tail shared between p and q. Finally, list.q; y/ � y 7!c is
rewritten to list.q; c/. This inference requires learning aŒi �'c, as previously discussed.

Note that the core of checking the shared-tail condition is to compare the sets of
predecessors in the transitive closure of the equivalence closure of the union of the 7!
and list relations. The use of equivalence closure necessitates an eager computation of
the equality consequences of formulas.

Related Work Classical congruence closure [5] infers equalities from conjunctions
of equalities with uninterpreted functions. In contrast, the problem addressed here is
to infer congruences modulo arbitrary formulas (e.g., clauses instead of conjunctions),
over theories supported by SMT solvers. Satisfiability Modulo Theories solvers that are
based on the DPLL(T) architecture [11] use congruence closure to check satisfiability
of a conjunction of assumed equalities with respect to assumed disequalities. Saturation
based theorem provers for classical first-order logic use superposition inference rules
to deduce new equalities from old ones. The algorithmic problems of unification and
congruence closure have received significant attention and enjoyed several celebrated
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results, such as linear time algorithms for unification [12, 13] and efficient congruence
closure algorithms [5]. Saturation procedures rely on term indexing and unification al-
gorithms and higher performance saturation engines strike a trade-off between indexing
data structures and the unification algorithms that are used in practice [7]. Similarly,
SMT solvers use congruence closure algorithms that have shown to perform well in
their context of use [4, 10]. For instance, Z3’s congruence closure algorithm uses a
variant of union-find with eager path compression.

Equality inference of Boolean functions is a deeply studied subject in the context of
circuit verification [2, 3] because when checking equality between two circuits it can be
a significant advantage to know that two sub-circuits compute the same Boolean func-
tion. Some of the main techniques use binary decision diagrams, BDDs, for identifying
sub-circuit equivalence. Note that equivalence of Boolean functions is a special case
of the problem we consider here: we are determining equivalence of not only Boolean
functions, but functions with any signature (e.g., functions over reals and integers). Ad-
ditionally, for the sub-circuit equivalence problem, it suffices to find enough equalities
to speed up the equivalence check, while we consider the problem of computing the
complete set. Detecting and using equivalences can also have profound effects on SAT
solving [6]. The use of SAT sweeping is critical for reducing the set of candidate equiv-
alences. SAT sweeping and possible generalizations to SMT provides orthogonal value
to the algorithms developed here.

Organization Section 2 first recalls a few technical preliminaries. Section 3 discusses
the simpler algorithms and then presents the Basic and Incremental Partition Refine-
ment algorithms and variants. The practical context where the algorithms are used is
discussed in Section 4. Section 5 closes with a thorough evaluation.

2 Preliminaries

We assume some basic familiarity with SMT solving and, to a greater degree, congru-
ence closure.

SMT, Models and Formulas We use standard notions of sorts, terms, formulas
and interpretations. Formulas are terms of Boolean sort. Terms are built using a first-
order signature where functions, such asC and _Œ_� can be interpreted. We assume that
interpretations, denoted M can be used to evaluate terms to values. For example, if
M ˆ xC2' 1, then M.x/ D �1.

Union-Find Our algorithms maintain partitions and use the well-known union and
find routines [15]. Given a domain E of nodes and a domain P of partitions of E, a
partition P of f1; : : : ; N g is a set of disjoint subsets, called classes, that cover the set.
We assume the following routines:

– find W P � E ! E, such that find.P; i/ returns a unique representative from the
equivalence class of i . Thus, find.P; find.P; i// D find.P; i/.

– union W P�E�E ! P , such that the equivalence classes of i and j are merged in
the result of union.P; i; j /. Thus find.union.P; i; j /; i/ D find.union.P; i; j /; j /.
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We furthermore use a nonstandard routine to split equivalence classes by removing
an element from a class and creating a new singleton class:

– remove W P �E ! P , such that find.remove.P; i/; j / D i if and only if i D j .

We only need to call remove.P; i/ in the case when i is not an equivalence class rep-
resentative. So if we implement union using eager path compression, then remove is
realized by detaching the removed node from a doubly-linked list.

3 Algorithms for Implied Equalities

The problem of computing all implied equalities can be stated as: given a formula˚ and
a set of terms t1; : : : ; tN , find a partition P of f1; : : : ; N g, such that for every p; q 2 P
and s 2 p; t 2 q: .˚ ! s ' t / is valid if and only if p D q. To set the stage for our
partition refinement algorithms, we begin by discussing some simpler algorithms.

3.1 Basic Partition Merging (BPM)

The most straightforward approach for finding all implied equalities is to check whether
an equality is implied for each pair of terms. In more detail, create a partition P of the
indices f1; : : : ; N g by checking whether˚ ! ti'tj for each pair 1 � i < j � N . One
can save a redundant check if j is already merged with another index k < j . The union-
find data structure can be used to maintain the partition as it is built. Asymptotically,
this straightforward algorithm requires O.N 2/ solver calls in the worst case.

Example 1 Consider again the formula ˚ W .a ' b ^ bŒi � ' c/ _ .aŒi ��4 ' d ^

f .d/' dC3 ^ f .d/C1' c/. We wish to partition the terms fa; b; c; d; aŒi �; bŒi �g in
the context of ˚ . Only the formula ˚ ! aŒi �' c is valid, so the resulting partition is
ffag; fbg; fc; aŒi �g; fdg; fbŒi �gg. Other validity checks fail. Once aŒi � and c are found to
be equal, it is redundant to check both ˚ ! aŒi �' d and ˚ ! c ' d . y

3.2 Model-based Partition Merging (MPM)

The previous algorithm uses very little information between solver calls. More useful
information is available when the SMT solver produces models. Whenever checking
that˚ ! ti'tj is valid, we do in fact check dually whether˚ ^ ti 6'tj is unsatisfiable.
If it is satisfiable, then a model can be extracted that satisfies ˚ and the disequality
ti 6' tj . The model may also distinguish other terms that are not tested for equality. So
the set of potential equalities that have to be tested can be reduced by inspecting the
model after each satisfiability check, exploiting the property that if two terms evaluate
to distinct values in a model, their equality cannot be implied. While this algorithm still
requires O.N 2/ solver calls, all but one of them will be satisfiable, in contrast to BPM
where each merge is the result of an unsatisfiable query. This is relevant since solvers
often can solve satisfiable queries faster than unsatisfiable ones.

Example 2 Continuing with ˚ , suppose that it has a model where i D 0; aŒi � D

bŒi � D c D 1; d D aŒ1� D 2; bŒ1� D 3. We then know that it only makes sense to
check equalities among faŒi �; bŒi �; cg instead of the full set including fd; a; bg. y
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3.3 Basic Partition Refinement (BPR)

We saw that models play a role dual to validity checks: they indicate what equalities
are not implied. We can take this idea to its fullest extent and develop an algorithm
that splits partitions based on models instead of merging partitions based on validity
checks. If we ensure that every satisfiability check splits at least one class, then this
approach requires at worst only a linear number of solver calls. To start with, we can
check satisfiability of ˚ ^

W
i>1 t1 6' ti . Any model of the formula must satisfy at least

one disequality. The model also produces a more refined partition: only terms that are
equal in the current model have to be compared for disequality. So suppose P is the
current partition, then we define the formula

SomeDiff W
_

p2P; jpj>1; i2p

_
j2p; i¤j

ti 6' tj

such that ˚ ^ SomeDiff is satisfiable if and only if some class can be split.

Example 3 Continuing the previous example, we create the predicate SomeDiff W c 6'
aŒi � _ c 6' bŒi � _ a 6' b corresponding to the partition ffc; aŒi �; bŒi �g; fdg; fa; bgg.
The formula ˚ ^ SomeDiff is satisfiable where c 6' bŒi � is true, c 6' aŒi � is false (so
c' aŒi �), and a 6' b is true. The next formula ˚ ^ c 6' aŒi � is unsatisfiable, so we learn
that c ' aŒi � is implied. y

This method only requires a linear number of solver calls. Yet, it is either non-
incremental (the SomeDiff constraint is retracted between each solver call), or it re-
quires quadratic space: it has to create fresh disequality literals between subsequent
calls and has to create new clauses at every call. That is, it is unclear whether the com-
plexity has simply been shifted around, or in other words, if O.N/ solver calls which
each receive O.N/ new constraints is an improvement over O.N 2/ solver calls which
each receive O.1/ new constraints. We will now develop algorithms that address time
and space deficiencies of BPR.

3.4 Incremental Partition Refinement (IPR)

The IPR algorithm refines BPR by allowing reuse of literals and clauses between iter-
ations. The algorithm creates a binary heap of propositional variables. The heap has a
leaf for each term, where the proposition is constrained to hold if and only if the term is
not equal to its representative. The proposition of each internal node holds if and only
if one of its children does. The root of this heap is therefore equivalent to SomeDiff .
Example 4 Consider computing the equality

�0

�2

�6 t1 W aŒi ��4

�5
�12 t7 W bŒi �

�11 t6 W aŒi �

�1

�4
�10 t5 W d

�9 t4 W c

�3
�8 t3 W b

�7 t2 W a

partition of terms faŒi ��4; a; b; c; d; aŒi �; bŒi �g
implied, again, by the formula ˚ W .a ' b ^
bŒi � ' c/ _ .aŒi ��4 ' d ^ f .d/ ' dC3 ^

f .d/C1' c/. The algorithm starts with the ini-
tial partition P D ff1; : : : ; 7gg and initializes a
proposition heap � of size 12, adding the leaf
and internal node constraints. The tree structure
induced, as well as the associations between
propositions �i and nodes, and between leaves and terms, is shown in the figure. y
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The heap is used in several ways. The first use we describe is to use the truth values
of the propositions in a model M to determine what partitions to refine.

Example 5 Continued: ˚ conjoined with the proposition heap constraints is satisfiable,
and suppose the extracted model M satisfies aŒi ��4'd , c'aŒi �' bŒi �, a' b, c 6'd ,
a 6' d and a 6' c. Therefore (assuming for the sake of presentation, that the find routine
returns the element ti of a class with minimal i ) M will assign �6 and �10 to false and
the other propositions to true. This is because the term associated with �6, t1 D aŒi ��4
was the representative of the single class, and �10 is associated to t5 D d , which is
still equal to its representative aŒi ��4 in M. All other terms are no longer equal to their
existing representative. y

The heap is only updated along paths where a model M established that candidate
equalities were found to be not implied.

Example 6 Continued: The constraints for the new partition are constructed by updat-
ing the proposition heap using a depth-first traversal starting from the root 0, excluding
sub-trees whose propositions do not hold. Since M.�i / D true for all i except 6; 10,
traversal proceeds from the root 0 to the leaf 7. To update the heap at 7, first the par-
tition is refined to remove.P; 2/ by removing the associated term, t2 D a, from its
current class. Then �7 is overwritten with a fresh proposition, and the updated parti-
tion is used to conjoin �7 $ t2 6' tfind.P;2/ for the fresh �7 to ˚ , reestablishing the
leaf constraint. Next, 8, associated with t3 D b, is visited. This proceeds similarly to
the update for 7, except that now, since M satisfies a ' b, the partition is updated to
union.remove.P; 3/; 3; 2/, removing b from its current class and merging it into the
class of a. The updated partition is again used to extend ˚ to reestablish the leaf con-
straint for a fresh �8. Next, to update the internal node 3, �3 is overwritten with a fresh
proposition and ˚ is extended to reestablish the internal constraint �3 $ .�7 _ �8/

for the new propositions. Updating the heap proceeds similarly until reaching 10. Since
M.�10/ D false, �10 and its existing constraints are reused. Updating then proceeds
similarly, refining the partition to P D ff1; 5g; f2; 3g; f4; 6; 7gg. y

Note how the leaf constraints, where each term is disequal to its representative, mir-
ror an eagerly path-compressed union-find representation of the current partition. This
design is significant since it ensures that leaf propositions for representatives are always
inconsistent (representatives are their own representatives), and hence an equivalence
class representative will never be chosen for removal from its current class. Without
this guarantee, the simple implementation of the nonstandard remove routine described
in Section 2 would not suffice.

Algorithm 1 distills the examples as the IPR algorithm. The binary heap of proposi-
tional variables is represented as an array, which is initialized with fresh propositional
variables on line 3. Line 4 then adds the heap constraints described above to the in-
put formula. Following the approach illustrated by the preceding examples, the update
procedure uses the values of the �i to traverse the part of the binary heap containing
satisfied disequalities, constructing new disequalities for the leaves where the partition
changes, and rebuilding the binary heap of propositions reusing as many subformulas
as possible, so that �0 is again equivalent to the disjunction of the disequalities be-
tween each term and its current representative. Incrementally updating the partition in
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Algorithm 1: Incremental Partition Refinement (IPR)
Input: formula ˚ and set of terms ft1; : : : ; tN g
Output: equality partition P of the set f1; : : : ; N g

1 P  ff1; : : : ; N gg

2 foreach i D 0 : : : 2N � 2 do
3 �i  fresh propositional variable

4 ˚  ˚ ^ �0 ^

N�2̂

iD0

.�i $ .�2iC1 _ �2iC2// ^

N̂

iD1

.�iCN�2 $ ti 6' tfind.P;i//

5 while ˚ is satisfiable do
6 M interpretation satisfying ˚
7 Q ;

8 Procedure update.i/ is
9 if M.�i / D true then

10 �i  fresh propositional variable
11 if i < N � 1 then // i is internal
12 update.2i C 1/
13 update.2i C 2/
14 ˚  ˚ ^ .�i $ .�2iC1 _ �2iC2//

15 else // i is a leaf
16 let j D i � .N � 2/ // leaf i is associated with term tj
17 let k D find.P; j /
18 assert k ¤ j
19 P  remove.P; j /
20 if hk;M.tj /i … dom Q then
21 QŒhk;M.tj /i� j

22 else
23 let h D QŒhk;M.tj /i�

24 P  union.P; j; h/

25 ˚  ˚ ^ .�i $ tj 6' tfind.P;j //

26 update.0/
27 ˚  ˚ ^ �0

28 return P

lines 18–24 uses a temporary map Q from pairs of (representatives of) classes of the
previous partition and values to classes of the updated partition. This map is used to
merge terms in the updated partition that are both in the same class of the previous
partition and given the same value by M. This is necessary to avoid the refined P
breaking more equalities than M refuted. Lines 10–25 are executed for each j that
should change class, that is, such that M satisfies tj 6' tfind.P;j /. First j is removed
from its existing class. (Note that since M satisfies tj 6' tfind.P;j /, j ¤ find.P; j /, so
the remove operation is not problematic.) Then if there is not already another class for
terms of j ’s previous class, k, and current value, M.tj /, then record j as such a class.
Otherwise, merge j into the existing class h. Therefore, the effect of lines 26–27 is to
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strictly refine P while preserving all equalities that are true in M, and to extend ˚ to
admit only models which violate the new P .

Example 7 Continued: The map Q is initially empty, so when node 7, associated with
t2 D a, of the heap is updated, Q is updated with a mapping from h1;M.a/i to 2 to
record that 2 is the new representative for terms currently in the class ff1; : : : ; 7gg that
are also equal to a in M. Then, when 8, associated with t3 D b, is updated, since M
satisfies a ' b, Q contains a mapping for h1;M.b/i. So P is updated to merge the
classes of 3 and 2.

Continuing with the second iteration, P D ff1; 5g; f2; 3g; f4; 6; 7gg, and ˚ is still
satisfiable. Suppose the new model M still satisfies aŒi �' c, and now satisfies a 6' b,
aŒi ��4 6' d and c 6' bŒi �, as well as d ' bŒi �. Therefore M will satisfy �8, �10, �12, as
well as their ancestors, but no others. The updates for 8 and 10 will proceed similarly
to the first iteration described above. The update for 12 is similar, but illustrates the
necessity of keying the map Q on pairs of the current class and value. Note that M
equates t5 D d and t7 D bŒi �, but t5 and t7 are in distinct classes of P . Therefore
when updating 12, the lookup at line 20 does not find an existing entry, and so does not
merge the classes of 7 and 5. KeyingQ on only the term values would result in merging
classes that have already been split. This would violate the property that the partition is
monotonically refined, which is crucial to making only a linear number of solver calls.

Finally at the end of the second iteration, P D ff1g; f2g; f3g; f4; 6g; f5g; f7gg, and
˚ is unsatisfiable. y

Compared to the BPR algorithm, Algorithm 1 constructs fewer, but still O.N 2/,
new disequalities. The problem is that terms may change representative many times.
Consider a case where no equalities are implied, and an execution where at iteration
i 2 1 : : : N the interpretation satisfies all disequalities tj 6' tfind.P;j / for i < j � N .
Therefore at iteration i , N � i new disequalities will be created, and overall

PN
iD1N �

i D 1
2
N.N � 1/ disequalities are created. We here use problem instances encountered

in practice to justify that this worst-case scenario is unlikely.

Assumption-based IPR (ABIPR) We also experimented with a slight variation of
IPR that uses assumptions to control the contents of leaf nodes. The variant uses fresh
propositional variables ai and assertions of the form ai ! .�i $ ti 6' tfind.P;i//. With
these constraints conjoined to ˚ , the satisfiability check is replaced with a satisfiability
check subject to also assuming the ai for each leaf. This avoids accumulating asser-
tions and is potentially more incremental. Indeed our experimental evaluation did show
improvements in performance for this alternative over IPR, yet the improvements were
not major for our evaluation suite.

Incrementality via Term Sharing (HIPR) Some solvers ensure maximal sharing of
terms, that is, if a term that occurs in an existing constraint is constructed, the existing
term is reused for the newly constructed one. For such solvers, asserting a constraint that
is, e.g., a disjunction ofN disequations where most already occur in existing constraints
is not significantly more expensive than asserting only the new disequations. Native
support for n-ary disjunction is also beneficial in this situation.
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We experimented with a hybrid incremental partition refinement (HIPR) algorithm
that is a hybrid between BPR and IPR. Like BPR, it asserts a disjunction of N dise-
quations at each refinement iteration. The particular disequations are those at the leaves
of IPR’s proposition heap, thereby ensuring that many disequations will be shared with
those from the previous constraints. In this way, much of the benefit of IPR’s incre-
mentality may be realized without the overhead of manipulating the proposition heap.
Indeed, our experimental evaluation indicates that, for our evaluation suite, the over-
head of manipulating the propositions sometimes significantly outweighs the overhead
of repeatedly reconstructing existing disequations.

3.5 Space-Optimized Partition Refinement

We can do even better asymptotically. In the following we outline, omitting lower-level
details, a partition refinement based algorithm that takes O.N/ iterations and has an
overhead of O.N logN/ fresh sub-terms.

The idea is as follows: Similar to Algorithm 1 we will maintain a binary tree rooted
in �0 that covers the current disjunction of disequalities. In contrast to that algorithm,
however, we represent each class of a partition as a disjunction chain of the form

t1 6' t2 _ t2 6' t3 _ � � � _ tN�1 6' tN (1)

instead of a disjunction star of the form

t1 6' tj _ t2 6' tj _ � � � _ tN 6' tj

where 1 � j � N is the equivalence class representative.
We maintain a two level binary tree where internal nodes are labeled by literals �i

and constraints of the form �i $ .�2iC1 _ �2iC2/.
The lower level summarizes the disjunction of asserted disequalities within a current

class. The upper level summarizes the disjunction of disequalities for classes of size at
least 2. Let us consider the case where one of the classes is refined. So suppose that
˚ is satisfiable with model M and that K out of the N � 1 disequalities are satisfied
by M. The sub-tree that covers the previous class is refined into a tree that covers the
new classes. We claim that we require at most 2 � .logN C K/ fresh literals for the
sub-tree. To see this, consider the sequence (1) where K out of the N � 1 literals are
true and the rest are false. If there are more than two contiguous literals that are false,
then two neighbors must be summarized by an internal literal (a literal �i ). We will
reuse this summary when rebuilding the tree for the new constraints. The number of
literals it takes to cover a sequence of false literals is therefore at most logN . So we
can build a tree of size logN CK above these together with the K fresh literals in the
leaves. The total number of fresh literals required to cover the new equivalence classes
is therefore 2 � .logN CK/ (half for the leaves and half for the internal nodes). We also
have to ensure that the upper and lower-level trees are balanced so that we can update
at most O.logN/ literals from the root to the leaves when updating the partitions. So
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consider a set of balanced trees of different heights. We extract an almost balanced tree
by eagerly joining any two trees of the same height until all trees have different heights.
Then create an almost balanced tree out of the remaining trees. �

�

�

�

��

�

��

�

�

��

�

��

�

�

��

�

The maximal depth of the resulting two-level tree is then at most
logN C 1. By almost balanced we mean a binary tree (example
on the right) that satisfies the following predicate AB.n/, defined
recursively over binary trees for nodes n: AB.n/ holds if n is a
leaf, or n is balanced, or if n:right is balanced, height.n:left/ <
height.n:right/ and AB.n:left/.

The construction ensures that the number of fresh literals introduced is at most
O.N logN/. To justify this, let N0 be the original number of terms. During one itera-
tion we introduce Mj new classes. The new classes have sizes a1N; : : : ; aMj

N , wherePMj

iD1 ai D 1 and N�1
N
� a1 � a2 � � � � � aMj

�
1
N

, so that a1 is the fraction in
the largest class. Thus, K is proportional to .1 � a1/N ; the contribution logN from
the false literals is dominated by N . The cost of partitioning a class with N (N � N0)
terms is bounded by

T .N;N0/ � O.Mj logN0/CO..1 � a1/N /C
PMj

iD1 T .aiN;N0/; N > 1

where T .1;N0/ D O.1/, O.Mj logN0/ is the cost of updating the upper layer tree,
O..1 � a1/N / is the number of literals introduced for updating the lower level tree for
the current class, and T .aiN;N0/ is the number of fresh literals used for further refining
the new classes. Since there can be at most N classes, we have

P
j Mj � N . We claim

that the recurrence T .N;N0/ is bounded byO.N logN0/, so T .N0; N0/ is bounded by
O.N logN/. To verify this, first separate the contribution O.Mj logN0/ from T . The
contribution expands into a sum

P
j O.Mj logN0/, which by the bound on

P
j Mj , is

O.N logN0/. Thus,

T .N;N0/ � O.N logN0/CT
0.N /; where T 0.N / � O..1�a1/N /C

PMj

iD1 T
0.aiN/:

We can over-approximate the cost
PMj

iD2 T
0.aiN/ by T 0..1� a1/N / (as the cost of the

latter includes splitting a class of size .1 � a1/N into smaller classes), so the bound to
analyze is: T 0.N / � O..1�a1/N /CT

0.a1N/CT
0..1�a1/N /. The upper bound for

the size contribution a1 of the largest class decreases in each unfolding because M�1
M

<
N�1

N
for M < N , so we will just assume that it remains fixed at a1. Thus, the depth of

unfolding T 0 is bounded by � logN= log a1, and the contribution of O..1 � a1/N / in
each level adds up to .1 � a1/, so the overall cost is the product O.N logN/.

Space-Optimized Partition Refinement via Term Sharing (HSOPR) Similar to
the hybrid algorithm between BPR and IPR, we experimented with an algorithm that
asserts a disjunction of N disequations at each refinement iteration, but uses chains
rather than stars of disequations following (1). This yields an algorithm with O.N 2/

space complexity as there are O.N/ iterations, each of which creates a disjunction of
size N . However, at most O.N logN/ of the disequalities are fresh, resulting in a high
degree of incrementality.
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4 Practicalities

There are several important details that are significant in an implementation of these
algorithms. We will describe the most prolific ones here that we encountered in the
context of Z3. We believe these are generic issues.

Canonicity The model-based algorithms all rely on a solver providing models with
the ability to evaluate terms. The requirement is that if two terms t1; t2 are the same
under an interpretation, then the evaluation under a model M is the same: M.t1/ D

M.t2/. We say that the interpretations are canonizing for a sort. Z3 produces canonizing
interpretations for sorts Booleans, bit-vectors, integers, reals (for linear constraints), and
algebraic data types that use sorts with canonizing interpretations. An example algebraic
data type that is canonizing is the sort of finite lists of integers. Another example is finite
lists of finite lists of integers. Terms of sort finite lists over arrays are on the other hand
not canonizing. The implementation falls back to a version of basic partition merging
for terms of non-canonizing sorts.

Array Values Z3 does not produce canonizing interpretations for arrays. So if we
are given terms t1; t2; t3 whose sorts are (one-dimensional) arrays, Z3’s evaluation of
these terms under M does not produce canonical values. There is a simple trick, how-
ever, that takes care of arrays in many cases: Due to extensional equality of arrays,
the equality partition for ft1; t2; t3g under ˚ is the same as the equality partition for
ft1Œi �; t2Œi �; t3Œi �g under ˚ , where i is a fresh index variable.

Pre-partitioning Based on Sorts SLAYER queries for partitions of several sorts of
terms at the same time. We found that the merging-based algorithms benefited signif-
icantly from pre-partitioning the terms by sort. It was particularly important to distin-
guish terms in the image of the translation of array terms above from those that gen-
uinely have the same sort as the range of the array. In such cases, not distinguishing
by sorts leads to logically more difficult problems. The implementations of the refine-
ment algorithms include an optimization where the initial partition is not taken to be
the coarsest one, but is computed from the model generated by the first satisfiability
check. This first model will yield an initial partition which distinguishes all terms of
distinct sorts, except those produced by the array translation, which the implementation
explicitly separates from the others.

Knowing the Terms Z3 can provide an evaluator given a model M ˆ ˚ that
evaluates subterms in ˚ . To force all terms t1; : : : ; tN to be in ˚ , we initialize ˚ to
˚ ^ K.t1/ ^ � � � ^ K.tN /, where K is a fresh predicate (Known).

Diversity All algorithms that rely on models require fewer iterations if the models
are as diverse as possible. For example, if ˚ is consistent with all t1; : : : ; tN evaluating
to different values, we are done in a single iteration. But Z3 is not required to produce
diverse models. In the case of algebraic data types Z3 searches for models by building
small instances. So for lists, Z3 always attempts to set a term to nil (the empty list).
For arithmetic, Z3 supports a configuration, arith.random_initial_value=true, for
shaking up initial values. Otherwise values of variables default to 0.
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5 Empirical Evaluation

We used SLAYER running on device driver benchmarks to evaluate the algorithms.
Statistics were gathered as SLAYER was running, to accurately reflect the actual mode
of usage, which is through Z3’s incremental programmatic interface. No individual im-
plied equalities queries exhausted time or memory resources, although there are fewer
queries for some algorithms in cases where the client analyzer exhausted resources.
SMT-LIB2 benchmark files for most queries were generated during separate runs and
are available online.1 Appendix B contains many more details.

Figs. 1–6 each compare two algorithms. Results are reported only for the instances
where the formula is satisfiable, all the algorithms behave equivalently with inconsis-
tent formulas and so those points only add clutter. The right y-axis and top x-axis are
the run times for the two algorithms. Times are reported in seconds, where query times
measured below 50ms have been reported as 50ms since such instances are uninterest-
ingly easy and accurately measuring such short times is problematic. Instances that are
quickly solved by only one algorithm appear on an axis. A solid y D x line is shown,
as well as dotted lines indicating speedup and slowdown factors of 10x, 100x, and so
on. Each plot includes a solid trend line that has been fit to the data, for what it is worth
given the very high degree of variation and delicacy of nonlinear fitting. Each plot also
includes two lines from upper-left to lower-right, associated with the left y-axis and
bottom x-axis. The solid line indicates the number of instances where the algorithm
on the right y-axis was faster than the algorithm on the top x-axis by at least the left
y-coordinate seconds, and vice versa for the dashed line. The key reports the area under
these curves, representing the cumulative speedups.

Fig. 1 compares the run times of the naïve Basic Partition Merging and semi-naïve
Model-based Partition Merging algorithms. The conclusion is extremely clear-cut: de-
spite the fact that the algorithms have the same theoretical complexity, in virtually all
cases the model-based algorithm shows 10–5000x speedups.

Fig. 2 compares the run times of the MPM and new Incremental Partition Refine-
ment algorithms. Here the results are still very clear-cut, though not as dramatic as with
the comparison to the most basic algorithm. There is a scattering of, generally easier, in-
stances where MPM outperforms IPR, but the bulk of the harder instances see between
10–100x speedups with IPR.

The assumption-based algorithm, ABIPR, does not offer dramatic benefits over IPR.
Fig. 3 shows that while ABIPR is slightly faster overall, and is trending to scale slightly
better on the harder instances, there are many instances on which IPR is faster. Fig. 4
compares BPR to ABIPR, showing that for our evaluation suite manipulating the propo-
sition heap results in a significant overhead. ABIPR is faster on the easier instances, but
BPR has larger speedups. So while on our benchmark suite the overall time spent by
BPR is slightly higher than ABIPR, there is a slight trend toward BPR scaling better.

Fig. 5 compares HIPR versus BPR, showing that the hybrid incremental algorithm
is overall somewhat faster than the basic version.

1 http://research.microsoft.com/apps/pubs/default.aspx?id=215371
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Fig. 6 shows that the HSOPR algorithm based on the O.N logN/-space algorithm
has some overhead relative to HIPR leading to slower performance on the easier in-
stances, but scales better on the harder instances.

To provide an overall picture of all the algorithms discussed, Fig. 7 shows the num-
ber of instances solved within a given run time. From this we see that:

– BPM is much slower than the others.
– MPM is much faster than BPM but still significantly slower than the others.
– HIPR is fastest on easy instances, but is overtaken by HSOPR as it scales better.
– BPR and HSOPR are slower on easier instances, but scale better than IPR and

ABIPR, eventually overtaking them.

The implementations of BPR and HSOPR are similar. They require a little more work
outside of the SMT solver than the IPR, ABIPR and especially HIPR.

Fig. 8 compares the overall SLAYER analysis run times using each algorithm rela-
tive to using MPM. The results show that, while computing implied equalities is only
one sub-algorithm, improving it still yields considerable speedups of 10–100x or more
over BPM and an additional 2x over MPM. SLAYER hardly works with BPM, comput-
ing implied equalities is the bottleneck. With MPM, computing implied equalities is no
longer the only bottleneck, but a significant speedup is still achieved by the refinement-
based algorithms. The differences between the various refinement-based algorithms are
not as apparent on full analysis runs, though HIPR is most often fastest, and ABIPR
and IPR have some notable wins on hard instances.

In summary, the model-based algorithms dramatically outperform BPM. Among the
model-based algorithms, partition refinement is clearly superior to the partition merging
done by MPM. Between the partition refinement algorithms, relying on sub-formula
sharing to achieve incrementality is at least as effective as using the proposition heap.
And finally, the additional reuse enabled by following theO.N logN/-space algorithm
results in noticeably-better scaling.
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6 Conclusions

Prompted by benchmarks from an application in program analysis, we developed ef-
ficient algorithms for inferring implied equalities. It generalizes congruence closure
along two dimensions: from conjunctions of equations to general Boolean formulas,
and from the free theory of uninterpreted functions to the variety of theories the em-
ployed solver supports. To our knowledge, only initial basic algorithms had been previ-
ously proposed. The overall result is a drastic reduction in solver calls over simple al-
gorithms. An empirical evaluation using non-synthetic, but single-source and generally
short-running, benchmarks shows speedups exceeding 10–100x over the implemen-
tation of Model-based Partition Merging previously available in Z3, which is already
almost never less than 10x, and up to 5000x, faster than the basic algorithm.
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A Additional Details of Equality Consequence Algorithms

For reference and to clarify the experimental comparisons, we present the algorithms in
more detail.

A.1 Basic Partition Merging (BPM)

Algorithm 2 implements the elementary approach Basic Partition Merging for finding
all implied equalities. For every pair of terms ti ; tj , it uses an SMT solver query to
check if the equality between ti and tj is forced. If ti and tj are equal, the partition P is
updated by merging the classes where i and j occur. It uses the routines find and union
from Section 2.

Algorithm 2: Basic Partition Merging (BPM)
Input: formula ˚ and set of terms t1; : : : ; tN
Output: equality partition P of the set f1; : : : ; N g

1 P  ff1g; : : : ; fN gg;
2 foreach index i D 1 : : : N do
3 foreach index j D i C 1 : : : N do
4 if find.P; i/ ¤ find.P; j / ^ CheckValid.˚ ! ti ' tj / then
5 P  union.P; i; j /;

6 return P ;

Theorem 1 Algorithm 2 computes the equality partition of ˚ for terms t1; : : : ; tN . It
requires O.N/ space and O.N 2/ solver calls.

Proof (sketch) Correctness of Algorithm 2 follows immediately from the assumed cor-
rectness of the SMT solver. A complexity ofO.N 2/ solver queries is also immediate.�

A.2 Model-based Partition Merging (MPM)

Suppose that ˚ is satisfiable with an interpretation M that makes terms ti and tj dif-
ferent. It is then not necessary to check if the equality between ti and tj is forced.
Algorithm 3 implements the Model-based Partition Merging approach, using models as
a filter for which equalities to check.

Theorem 2 Algorithm 3 computes the equality partition of ˚ for terms t1; : : : ; tN . It
requires O.N/ space and O.N 2/ solver calls.

Proof (sketch) Correctness of Algorithm 3 follows directly from that of Algorithm 2
and the fact that only equalities true in M can be true in all interpretations. TheO.N 2/

theoretical complexity is unchanged. �
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Algorithm 3: Model-based Partition Merging (MPM)
Input: formula ˚ and set of terms t1; : : : ; tN
Output: equality partition P of the set f1; : : : ; N g

1 if ˚ is unsat then
2 return ff1; : : : ; N gg;

3 M interpretation satisfying ˚ ;
4 Q ;;
5 foreach index i D 1 : : : N do
6 v  M.ti /;
7 if v 62 dom Q then
8 QŒv� ;;

9 QŒv� QŒv� [ fig;

10 P  
S
fBasic Partition Merging.QŒv�/ j v 2 dom Qg;

11 return P ;

A.3 Basic Partition Refinement (BPR)

Algorithm 4 is a basic algorithm based on partition refinement. It requires at most N
satisfiability checks, but creates a new formula of size up to N in each iteration. While
models were used as hints in the previous Algorithm 3, models are now an integral part
of the algorithm: the models indicate where the partitions should be refined.

Theorem 3 Algorithm 4 computes the equality partition of ˚ for terms t1; : : : ; tN . It
requires O.N 2/ space and O.N/ solver calls.

Proof (sketch) If the input formula is unsatisfiable, then it vacuously implies every
possible equality, so the initial maximally coarse partition is correct. Otherwise ˚ is
satisfiable and the first iteration of the outer loop establishes the invariant that all further,
refinement, iterations maintain. During refinement, the partition acts as a conjecture that
all equalities between terms in the same class are implied by the input formula, call it
˚0. The partition P and formula ˚ are updated in sync, maintaining the property that
P contains all equations implied by ˚0 and ˚ is satisfied by the interpretations that
satisfy ˚0 but violate an equality contained in P .

First note that lines 4–12 set P 0 to the coarsest partition that distinguishes all terms
that P does as well as those terms that are given distinct values by M. This works by
considering each class of P in turn and constructing a map from values v to sets of the
indices of terms that evaluate to v in M. The union of the ranges of these maps forms
the new partition.

Since P initially contains all equations, any equation not in P 0 is not implied, as
witnessed by M. The update to ˚ at line 14 adds a constraint that is satisfied by in-
terpretations which violate at least one of the equalities conjectured by the updated
partition P . Therefore the invariant is established.

Preservation of the invariant follows similar reasoning. The invariant ensures that
M satisfies ˚0, and hence does not violate any equalities implied by ˚0. It also ensures
that P contains all implied equalities, and hence lines 4–12 set P 0 to a partition that
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Algorithm 4: Basic Partition Refinement (BPR)
Input: formula ˚ and set of terms t1; : : : ; tN
Output: equality partition P of the set f1; : : : ; N g

1 P  ff1; : : : ; N gg;
2 while ˚ is satisfiable do
3 M interpretation satisfying ˚ ;
4 P 0  ;;
5 foreach q 2 P do
6 Q ;;
7 foreach i 2 q do
8 v  M.ti /;
9 if v 62 dom Q then

10 QŒv� ;;

11 QŒv� QŒv� [ fig;

12 P 0  P 0 [
S
fQŒv� j v 2 dom Qg;

13 P  P 0;

14 ˚  ˚ ^
_

i21:::N

ti 6' tfind.P;i/;

15 return P ;

also includes all implied equalities. The update at line 14 again brings ˚ back in sync
with P . Note that since P is refined monotonically, the latest constraint added to ˚ is
stronger than all previous constraints added to ˚0.

Since every iteration breaks at least one equality, and there are N equalities in total,
termination is guaranteed after at most N satisfiability checks.

When˚ is eventually found to be unsatisfiable, the invariant ensures thatP contains
all the implied equalities, and also that there is no way to violate any of the equalities
in P . That is, P contains exactly the implied equalities. �

A.4 Incremental Partition Refinement (IPR)

Theorem 4 Algorithm 1 computes the equality partition of ˚ for terms t1; : : : ; tN . It
requires O.N/ solver calls and constructs O.N 2/ fresh literals.

Proof (sketch) Line 1 initializes P to the maximally coarse partition, which is cor-
rect since if the input formula is unsatisfiable, then it vacuously implies every equality.
Lines 2–4 assert constraints initializing the proposition heap such that, as discussed
above, the refinement loop invariant below holds.

The partition acts as a conjecture that all equalities between terms in the same
class are implied by the input formula, call it ˚0. Each iteration of the refinement loop
(lines 5–27) updates the partition P and formula ˚ , maintaining the invariant that P
contains all equations implied by˚0, and˚ is satisfied by the interpretations that satisfy
˚0 but violate an equality contained in P .
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Refinement continues so long as ˚ is satisfiable. The invariant ensures that M
extracted at line 6 satisfies ˚0, and hence does not violate any equalities implied by ˚0.
After clearing the temporary map Q, executing lines 26–27 preserves the refinement
loop invariant, as discussed above. When ˚ is eventually found to be unsatisfiable, the
invariant ensures that P contains all the implied equalities, and also that there is no way
to violate any of the equalities in P . That is, P contains exactly the implied equalities.

Since every iteration breaks at least one equality, and there are N equalities in total,
termination is guaranteed after at most N satisfiability checks. O.N 2/ is trivial, since
at worst each of the N iterations reconstructs the entire heap, which has size 2N � 1.�

B Additional Experimental Results

Fig. 9 is an enlarged version of Fig. 7. Fig. 10 is analogous, but reports the cumulative
run time consumed by the algorithms to solve each number of instances.

Figs. 11–31 compare the run times of each pair of algorithms, including enlarged
versions of Figs.1–6. Note that the size of the points is proportional to the square root
of the distance from the origin, to enable more detail to be shown for the more dense
easier problems without making the more sparse harder problems invisible.

Fig. 32 is an enlarged version of Fig. 8.
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 0.1

 1

 10

 1  10  100  1000  10000

 0.1

 1

 0.1  1  10

D
if

fe
re

nc
e 

in
 ru

n 
tim

e

A
ss

um
pt

io
n-

ba
se

d 
In

cr
em

en
ta

l P
ar

tit
io

n 
R

ef
in

em
en

t

Number of instances with at least indicated speedup

Incremental Partition Refinement

ABIPR faster (881s)
IPR  faster (219s)
1.4y1.26 = x

Fig. 26. Run time of ABIPR versus IPR



Computing All Implied Equalities via SMT-based Partition Refinement 29

 0.1

 1

 10

 100

 1  10  100  1000  10000

 0.1

 1

 0.1  1  10  100

D
if

fe
re

nc
e 

in
 ru

n 
tim

e

A
ss

um
pt

io
n-

ba
se

d 
In

cr
em

en
ta

l P
ar

tit
io

n 
R

ef
in

em
en

t

Number of instances with at least indicated speedup

Model-based Partition Merging

ABIPR faster (31391s)
MPM  faster (71s)
18.3y1.66 = x

Fig. 27. Run time of ABIPR versus MPM
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Fig. 29. Run time of IPR versus MPM
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